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Abstract 

This article concentrates on ground vision guided autonomous landing of a fixed-wing Unmanned Aerial Vehicle 

(UAV) within Global Navigation Satellite System (GNSS) denied environments. Cascaded deep learning models are 

developed and employed into image detection and its accuracy promoting for UAV autolanding, respectively. Firstly, 

we design a target bounding box detection network BboxLocate-Net to extract its image coordinate of the flying 

object. Secondly, the detected coordinate is fused into spatial localization with an extended Kalman filter estimator. 

Thirdly, a point regression network PointRefine-Net is developed for promoting detection accuracy once the flying 

vehicle’s motion continuity is checked unacceptable. The proposed approach definitely accomplishes the 

closed-loop mutual inspection of spatial positioning and image detection, and automatically improves the inaccurate 

coordinates within a certain range. Experimental results demonstrate and verify that our method outperforms the 

previous works in terms of accuracy, robustness and real-time criterions. Specifically, the newly developed Bbox-

Locate-Net attaches over 500 fps, almost five times of the published state-of-the-art in this field, with comparably 

localization accuracy. 
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1. Introduction 

In the past few decades, unmanned aerial vehicles 
(UAVs) have drawn more and more attention from 
many pragmatic fields because of its remarkable 
characteristics, such as low risk of casualties, low cost, 
lightweight, and great mobility associated with 
adaptability to dirty, dull and/or dangerous situations. 
UAVs have demonstrated their usefulness in a variety 
of practical applications of meteorological detection, 
local area monitoring, survey and mapping, forest fire 
prevention, earthquake rescue1 and so on. With the 
integration of advanced automation technology, un-
manned vehicles can perform regular-cruise tasks 
with quite little manual intervention, since the task 
workspace is almost wide when the vehicle is flying 
in the air. However, take-off and/or landing is still a 
technological challenge because the vehicle works in 
a quite compact space that has complicated relation-
ship with the ground. Specifically, landing of the 
fixed-wing vehicles has been proved to be the most 

challenging and hazardous period of aerial flight in 
many practical applications.2 Even minor errors in 
guidance or control might cause system damages or 
even crashes. This situation becomes more remarka-
ble due to a variety of complex application scenarios 
and meteorological environment conditions. Under 
such circumstances, autonomous landing has been an 
important and essential technique for unmanned sys-
tems within unknown or Global Navigation Satellite 
System (GNSS)-denied scenarios.3 Hereafter, auton-
omous landing within GNSS-denied scenarios is 
called as autolanding. Furthermore, this article con-
centrates on vision-based localization for autolanding 
then. 

Previous research on vision-based autonomous 
UAV landing can be categorized into onboard vision 
and ground vision modes. The onboard vision mode 
usually employs one or more cameras installed on the 
flying vehicle as a positioning sensor.4,5,6 When the 
aerial vehicle approaches the ground runway, the 
camera detects the runway and plans an appropriate 
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landing trajectory. In contrast, the ground vision 
mode distributes and fixes vision systems on the 
ground.7,8,9  

Compared with onboard navigators, the ground vi-
sion system possesses more scalable computing re-
sources and can save costs by placing them on a run-
way instead of configuring each vehicle separately. 
Furthermore, the image from the ground-to-air per-
spective is much more convenient for processing, 
than the images from the air-to-ground view. There-
fore, in this study, we focus on the ground vision 
mode for autolanding of fixed-wing unmanned air-
crafts. 

In the past few years, several prototypes of ground 
vision based autonomous landing systems have been 
developed in [7-9], respectively. All are concerned 
with a mapping from image sequence to spatial tra-
jectory by using computer vision which usually in-
volves two workflow steps: flying vehicle target de-
tection and automatic positioning. In this study, the 
vision automatic detection schemes are concerned and 
considered further. As for similar scenarios, Yang et 
al.7 presented accurate UAV landing performance in a 
GPS denied-environment, by running a ground-based 
near infrared camera system. A nose infrared laser 
lamp is fixed on the vehicle as a cooperative marker 
for image detection. The foreground area of the can-
didate targets is obtained by a simple morphological 
pre-processing. Researchers at Portuguese Navy Re-
search Center8 used a ground based monocular vision 
system supporting the autonomous landing of a 
fixed-wing aerial vehicle onto a fast patrol boat. For 
obtaining the relative pose of the vehicle, they have 
used several 3D model-based system combinations 
using the Computer-Aided Design (CAD) model for 
tracking. Both systems need to know the geometrical 
model or place the cooperative marker on the flying 
vehicle. On the contrary, Kong and Hu developed a 
traditional stereo ground-based system including two 
pan-tilt units and two cameras, without relying on any 
cooperative onboard markers or geometrical 
knowledge.9 Since the system was conducted, Hu, 
Tang, Cao et al.3,9,11 have been working on algorithms 
of automatic detection and localization on an auto-
landing vehicle. Both corner-based and skele-
ton-based algorithms have been designed and imple-
mented to target detection on the ground captured 
sequential images.3,12 Tang, Hu et al. 3 initially inte-
grated the active contour method into Chan-Vese 
model detection, and an extended Kalman estimator 
was developed for ground vision based localization. 
Thanks to on-ground sufficient computing resources, 
Cao et al.13 adopted and improved a flying vehicle 
tracking algorithm based on GOTURN, which at-
taches the frame rate to 100 fps, nearly 5 times higher 
than that of the Chan-Vese algorithm. 

Although the pre-existing researches have shown 
remarkable detection performance in the UAV auto-

landing processing, challenges still exist in accuracy, 
robustness and real-time feature, respectively. Yang's 
target detection method7 is only suitable for UAVs 
equipped with infrared laser lamp at the nose, which 
is difficult to be generalized for various types of aerial 
crafts. Due to the processing rate of below 25 fps, the 
real-time performance of Chan-Vese is seldom ap-
propriate for practical applications of autolanding.3 
Similarly, the GOTURN tracking based method13 
relies on human-computer interaction for labeling the 
bounding box within the first frame. Meanwhile, the 
tracking error ought to accumulate for a long-term 
period. Once a frame is tracked to the fall target, it 
may cause inefficacy of the whole vision-based 
tracking even. Particularly, some scenarios cannot be 
correctly treated by using the pre-existing methods. 
For instance, part of the landing vehicle goes out of 
the field of view, and only the partial body is captured 
from the images.  

Under such circumstances, this paper innovatively 
employs deep learning into mapping sequential image 
frames into spatial localization during the fixed-wing 
aircraft’s autolanding. Deep learning supports a high-
er processing speed of target detection, and enables a 
greater accuracy promotion of vision-based position-
ing further. The overall algorithm has a great im-
provement in accuracy, robustness and real-time than 
the previous works. The contributions of this paper 
are summarized as follows:  

(1) A light-weight convolutional deep neural net-
work model, namely BboxLocate-Net, is proposed 
and implemented to perform an initial coarse predic-
tion on spatial coordinates of the landing aircraft. The 
proposed BboxLocate-Net solves the problem that the 
too-many-parameters-tuning of the classic object de-
tection deep network and achieves a practical and 
effective balance between speed and accuracy.  

(2) A spatial motion continuity criterion is defined 
and fused into quantitative checking on the landing 
target detection, by taking full advantage of the 
high-speed rate of the light-weight detection network.  

(3) A key point regression network, namely 
PointRefine-Net, is developed to promote localization 
accuracy once the flying vehicle’s motion continuity 
is checked unacceptable. Then, the self-correction of 
error detection is realized, and both robustness and 
accuracy are improved simultaneously. 

2.  Ground vision for UAV autolanding 

Aiming at runway taxiing and landing of medium 
aerial vehicles, a ground stereo vision-based system 
has been developed and updated for several 
times.3,9,14,15 Previous several corresponding mapping 
algorithms to produce the spatial trajectory of the 
landing vehicle has also completed several online 
experiments supported by the on-ground vision sys-
tem.3,9,12,13 Here, the ground vision system deploy-
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ment and overall workflow for the ground-to-air vis-
ual system is reviewed and presented. 

2.1 System architecture and deployment 

The ground stereo vision-based system usually 
works in the aircraft descending and taxing stages to 
guide it moving in the field of view to accomplish 
automatic landing. It usually consists of four modules: 
image capture module, target detection module, posi-
tion calculation module and data transmission mod-
ule.3,9 In the image capture module, two binocular 
cameras are symmetrically installed on the independ-
ent Pan-Tilt units (PTUs) to capture the landing se-
quential images. Each PTU with camera module 
works independently and has two degrees of freedom 
to expand the search scope. Each PTU is controlled 
and serves to track the landing target and feeds the 
pitching and yawing angles backward. The target de-
tection module and position calculation module are 
used for 2D image target detection and 3D spatial 
location calculation, respectively. Both of them run 
on the same ground image processing computer. The 
data transmission module transmits the calculated 
spatial coordinates onto the onboard autopilot via 
wireless data link. A general deployment scheme has 
been designed and implemented for ground stereo 
guidance prototypes, as shown in Fig. 1. 

In real-scenario flights, a fixed-wing unmanned 
aircraft is guided into the view of the stereo camera 

by its onboard navigation system. Once the target is 
detected, the ground-based guidance system switches 
from the waiting state to the working mode. Two 
cameras capture the vehicle landing images, and then, 
the captured sequential images and PTU parameters 
are transferred to the image processing computer 
which detects the key point of the flight target and 
calculates its spatial coordinates. Finally, the spatial 
coordinates are wirelessly transmitted onto the 
onboard autopilot to facilitate autonomous landing. 

 In terms of deployment details, we assume that the 
origin of the world coordinate system (X, Y, Z) is at 
the rotation center of the left PTU, from the practical 
viewpoint of the published works [3,9,13]. The axis 
of the camera frame is parallel to that of the PTU 
frame in the initial position. The right camera is 
mounted on the X-axis, with the light center of the 
left and right cameras represented as Ol and Or, re-
spectively. The baseline of the optical system is OlOr. 
θl, θr, αl and αr respectively represent the tilt and pan 
angles. The anticlockwise measurement is positive. At 
the same time, the hardware configuration is updated 
to be compatible with the deep learning requirements. 
The captured image is transferred to the 
high-performance computing platform instead of the 
original control computer. The GPU component per-
forms high-load computations for flight target detec-
tion in sequential images, while the CPU is responsi-
ble for information-based positioning and wireless 
data transmission.

 

 

Fig. 1.  Schematic diagram of the ground stereo system for autonomous landing of the fixed-wing aerial vehicle. (a) General 
configuration and deployment of the developed ground vision system; (b) Overall workflow of the developed algorithm models 
from sequential images into spatial trajectory.  
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2.2 Overall workflow of vision-based localization 

The ground stereo vision-based location algorithm 
outputs the aircraft spatial coordinates during its au-
tolanding process, while captured sequential images 
and camera attitudes are inputted online. Generally 
speaking, the overall workflow is composed of im-
age-based target detection and filter-based localiza-
tion.  

On the basis of the system described in Section 2.1, 
the previous positioning algorithms have been devel-
oped and verified within simulation and experimental 
scenarios.3 The landing vehicle’s spatial coordinates 
are directly mapped by using the stereo measurement 
model, once knowing the target coordinates of the left 
as well as right images and the PTU attitude parame-
ters. In details, it assumes that the UAV actual coor-
dinate is (xw, yw, zw), and its coordinate on the left and 
right image plane is (ul, vl) and (ur, vr), respectively. f 
is the focal length of the camera. RL and RR represent 
the rotation matrix of the world coordinate system 
relative to the left and right camera coordinate sys-
tems respectively. Then, the relationship of the coor-
dinate between the 3D world and 2D image plane is 
calculated by: 
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The stereo vision algorithm processes the spatial 
coordinates one point by one point, so random dis-
turbance is inevitably involved in the outputted tra-
jectory under the mentioned principle of triangulation. 
Tang and Hu et al.3 proposed an extended Kalman 
filter estimator to improve localization accuracy by 
fusing knowledge of aircraft motion continuity. Here, 
X= (xw, yw, zw, vx, vy, vz) T denotes state variables, Y= 
(ul, vl, ur, vr) T means the observation values of de-
tected target coordinates in images. By constructing 
the state observation equation Eq. (4) and the state 
estimation equation Eq. (5), the whole system state 
estimation process is completed through five recur-
sive steps of extended Kalman filter. Real-scenario 
flight experiments have demonstrated that this meth-
od is more robust and accurate than the triangula-
tion-based localization algorithm.3 
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Eventually, this article employs deep learning 
models into a fast and accurate detection on the auto-
landing sequential images, since the pre-existing 
works need to be promoted with the processing rate 
and localization accuracy. Specifically, the proposed 
approach will be an original trial for the challenging 
scenario when the landing aircraft is partially out of 
the field of view. 

3. Deep learning models enabling accurate and
 fast detection 

In this study, a cascaded deep learning model is 
proposed and developed to enable ground vision 
based autolanding, with considerations on the existing 
challenges of real-time and accuracy. Such a scheme 
takes full advantage of the scalability of computing 
resources supported by the ground vision system. 
Firstly, the ground stereo mode is flexibly extendable 
to computing and/or storage resources. Here, we up-
grade the computing platform to GTX1080ti to run 
the deep learning algorithm more efficiently. Second-
ly, annotated mixed landing datasets are conducted 
through a large number of actual and simulation flight 
experiments. Hereafter, two lightweight learning 
networks are developed to enable a fast and accurate 
detection on the autolanding vehicle. Such a hierar-
chical structure processes vision-based localization 
from coarse extraction to fine correction. Thirdly, the 
system scalability is both feasible and effective for 
improving the real-time and accuracy of the ground 
stereo guidance system. Finally, higher processing 
speed provides extra operations of motion continuity 
checking and coordinate correction for autolanding 
localization. Furthermore, the proposed two-hierarchy 
deep neural models are implemented, demonstrated 
and validated as well. 

3.1. Two-hierarchy architecture of cascaded deep 
neural networks 

A cascade two-hierarchy convolution networks is 
employed to make fast coarse-to-fine prediction. In 
the first hierarchy, we propose a bounding box re-
gression-based convolutional network, whose input is 
the complete image captured by the camera. It is 
mainly responsible for predicting the aircraft ROI 
(region-of-interest) coordinates in the whole image, 
and assuming the center point of the bounding box as 
the key point location. The second hierarchy network 
takes the local ROI predicted by the first-hierarchy 
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network as input, allowing only a certain range of 
modifications to the former coarse predictions. The 
inputted image size and search range keep decreasing 
along the cascade.  

The detected bounding box certainly contains or 
covers the landing aircraft, but mismatching does 
exist between the detected box’s center and the actual 
image coordinates in either horizontal or vertical di-
rection. Such mismatching phenomenon often results 
in localization inaccuracy of the landing vehicle. It is 
even worse to lead to failure of the visual positioning 
task. Hereafter, we introduce a second-level network 
to optimize the accuracy of the vision-based localiza-
tion algorithm. Under such two-hierarchy architecture, 
the first level aims to estimate key point position ro-
bustly with few considerable errors, while the second 
level is designed to produce higher accuracy. 

The proposed cascaded deep learning detection 
method consists of four stages, as shown in Fig.2. In 

details, BboxLocate-Net represents the first-level 
network, and PointRefine-Net represents the sec-
ond-level network. In the first stage, an autolanding 
image dataset with annotations is conducted to train 
the coarse detection model BboxLocate-Net. It is fol-
lowed by a PointRefine-Net training process which 
takes lots of random small areas including key points 
as samples. In the third stage, the captured UAV im-
age is detected by BboxLocate-Net. In the fourth stage, 
the bounding box produced by the BboxLocate-Net 
detection module is finally used by the point refine-
ment module PointRefine-Net to obtain a more accu-
rate estimation of the guiding target.  

In the following sub-section 3.2 and 3.3, we focus 
on the deep neural network structure and algorithm 
workflow of each hierarchy. The combining strategies 
of cascade two-level networks are to be presented in 
sub-section 3.4. 

 

 

Fig. 2.  Structure of the detection model based on the BboxLocate-Net and PointRefine-Net. (a) BboxLocate-Net training pro cess; 
(b) Testing process; (c)PointRefine-Net training process. 

3.2. Deep learning based target detection 

The goal of detection algorithm is to locate and 
classify the targets during the UAV autolanding pro-
cess. The detected objects are usually labeled with 
bounding boxes, category information and confidence 

score as well.  
Recently, there have been more and more re-

searches on object detection. Faster R-CNN, 19 the 
two-stage proposal-driven CNN object detector, 
reaches great accuracy on many challenging datasets, 
while the processing speed is still a major concern. 
Facts show that it is obvious that Faster R-CNN is not 
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an optimal solution for real-time flying vehicle detec-
tion. YOLO v3, 20 the one-stage detector, not only 
demonstrates promising results but also yields about 
10 times faster detection speed. Experimental results 
demonstrate its accuracy reduced by about 12% 
compared to Faster R-CNN, and it still can hardly 
achieve real-time detection in the autolanding sce-
narios.  

Considering the balance between accuracy and 
processing time, this paper proposes a novel UAV 
object detection network named BboxLocate-Net 
which is designed to create a smaller-scale, faster, and 
more efficient deep neural model. Neither increasing 
the network depth nor width, we deal with the prob-
lem from another perspective. Using DenseNet21 for 
reference, we exploit the potential of the network 
through feature reuse and multi-scale fusion. We 
combine BboxLocate-Net as the feature extractor and 
YOLOv3 predictor. The BboxLocate-Net algorithm 
training and testing process are shown in Fig.2. 

We design BboxLocate-Net’s architecture based on 
the several principles of improving the real-time ca-
pacity and accuracy simultaneously. At first, reducing 
the network parameters is the key to improve the re-
al-time performance. It is inspired by the DenseNet21 
network to enhance the feature reuse between layers, 
full use shallow and deep information, and reduce the 
number of parameters. The proposed network intro-
duces a dense connection from one layer to all sub-
sequent layers, developing a highly dense feature re-
use connection among the five-layer feature maps. 
Different from DenseNet, we cascade the feature 
maps as the decreasing order of their resolution. In 
this study, it is named as “Ladder-Dense” connection.  

Then, the network is further designed to improve 
the detection accuracy. When the landing vehicle ap-
proaches and descends, the target is usually small and 
the background is relatively complex. The small tar-
get in the deep low-resolution feature map is usually 
apt to be lost. Since it makes worse accuracy of 
small-scale target detection, an HRNet22 inspired ap-
proach is adopted to make full use of the information 
across all scales of the image, and reduce the loss of 
feature maps information due to the decrease of im-
age resolution. Such a HRNet-inspired network works 
with a high-resolution subnetwork as the first parallel 
path, and gradually adds the other low-resolution lay-
er’s resolution-hold parallel path one by one. As a 
result, the parallel path explores the network potential 
while maintaining resolution. In the output part of the 
network, a multi-scales fusion unit is deployed to 
cascade the information from all parallel subnet-
works21 to capture and integrate information at all 
scales of an image.  

Finally, considering the real-time and accuracy of 
the detection network, the proposed BboxLocate-Net 
is tested with excellent performance in specified da-
tasets. It has been noted that HRNet and DenseNet, 

two state-of-the-arts networks, have produced excel-
lent performance in large-scale dataset detection tasks 
such as COCO23 and ImageNet24. Specifically, the 
autolanding image datasets have only two classes of 
plane and background. The proposed BboxLocate-Net 
rightly achieves a balance between prediction accu-
racy and processing speed, by combining the ad-
vantages of Densenet and HRNet together. 

During the detection process, each image captured 
from the ground cameras is resized to 320×240 to 
match BboxLocate-Net. Then, the 20×15×18 predic-
tion tensor is automatically generated through the 
feature extraction network BboxLocate-Net and the 
YOLO detection layer. Each of the 1×1×30 tensor 
includes the target location information: center coor-
dinates (x, y), width w, height h, category information 
and confidence score c.20 After obtaining the confi-
dence c of each prediction box, a threshold will be set 
to remove the boxes with a score below. Then the 
remaining bounding boxes are filtered with the 
non-maximal suppression to obtain multiple sets of 
high-score bounding boxes. In particular, the 
YOLOv3 predictor uses a set of initial anchor boxes 
with fixed width and height to regress and predict the 
target position. Here, K-means clustering25 is adopted 
to determine the number and the best size of anchor 
boxes. As shown in Fig.3, three clustering centers are 
presented for the training dataset using K-means 
clustering. The yellow box and the blue box respec-
tively represent two benchmark anchor boxes with 
different sizes. The final red box predicted by Bbox-
Locate-Net is calculated based on three anchor boxes. 

 

 
Fig. 3.  Detection results based on multiple anchor boxes. 
The yellow box and blue box respectively represent two 
benchmark anchor boxes of different sizes. The Red box is 
the prediction result. 

The kernel task of the BboxLocate-Net network is 
to calculate the object confidence value, while predic-
tion on the width, height and central coordinates of 
the UAV target is concerned as well. For example, 
Loss values of aircraft detection generally include 
head frame coordinate loss Losscoor and confidence 
loss Lossconf. The calculation equation is as follows: 
 ( ) coor confLoss UAV Loss Loss   (6) 

On one hand, Losscoor is quantitatively analyzed by 
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where obj
ijI denotes the possibility of a landing target in 

the j th anchor box of the i th grid; coord is the weight 

of positioning error, generally equal to 5; xi, yi, wi, 
and hi represent the UAV bounding box coordinates, 
width and height which is detected in i th grid, re-

spectively. ˆix , ˆiy , ˆ iw and ˆ
ih mean actual position pa-

rameters from training data of the i th grid. S2 repre-
sents the total number of grids after passing through 
the network. B is the number of anchor boxes. 

On the other hand, the loss function of confidence 
Lossconf is quantified as 
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where λnoobj denotes the weight coefficient of confi-
dence error. Ci indicates the confidence of the target 

contained in the i th grid of all S2 grids. ˆ
iC represents 

the confidence parameter of the i th grid in the manu-
ally labeled data. 

3.3. Deep learning based accuracy promoting 

In the previous works of ground vision based auto-
landing, the sequential coordinates are directly calcu-
lated once the detection is done, because its detection 
frame rate just satisfied the fundamental requirement 
of autolanding 3,13. There is no extra time for correc-
tion or refinement if the detection inaccuracy occurs 
or even cumulates. Therefore, we propose a second 
level point regression network to further optimize the 
target’s image coordinates. The above mentioned 
BboxLocate-Net greatly optimizes the speed of UAV 
target detection and provides the possibility for the 
implementation of motion continuity check and coor-
dinate correction. 

For practical applications, a criterion for checking 
the motion continuity is definitely in need to trigger 
whether or not to conduct an accuracy promoting al-
gorithm. In this paper, we synthesize the distance and 
angle indexes into the motion continuity criterion. We 
define F (xi, yi) as the candidate point. P (x1, y1) and Q 
(x2, y2) denote the last two points of flying trajectory, 
|FQ| denotes the space distance between point F and 
point Q. Then when the following two conditions are 
satisfied at the same time, F is regarded as correct. 
Otherwise, it is confirmed to be mismatched and has 
to be corrected then. 
 2 2 2

2 2 2| | ( ) ( ) ( ) 1.5 | |i i iFQ x x y y z z PQ        (9) 

 120PQF  ∠  (10) 
  Then, once the output of the first-level network is 
checked as not acceptably continuous, the sec-
ond-level point regression network PointRefine-Net 
starts to run. PointRefine-Net is a key point regression 
network which is responsible for correcting the key 
point coordinates in a small ROI. The training sam-
ples are 9 small areas with different sizes and posi-
tions randomly captured near the key points of each 

picture. The network is mainly for optimizing the 
offset value (x, y) of the key point from the upper left 
corner of the area. In order to minimize the loss of 
key point coordinate offset, the convolution kernel 
parameters are updated iteratively by using the back-
ward gradient propagation algorithm. When the loss 
value is less than the threshold value 0.002, the net-
work stops training and we get the final point regres-
sion network model. Fig. 2 (c) shows the training 
process of PointRefine-Net. 

We also design PointRefine-Net’s architecture 
based on the several principles of improving the re-
al-time capacity and accuracy. Since the input of the 
second level network is only a small part of the orig-
inal image, we design a resolution preserving point 
regression network. The feature extraction network is 
basically the same as the sequential path part of 
BboxLocate-Net. However, the difference between of 
them is that the resolution of the first few layer 
changes from high to low in BboxLocate-Net but 
stays the same in PointRefine-Net. In the shallow lay-
ers, for encouraging feature reuse, the front layer of 
feature extraction network of PointRefine-Net uses 
dense connection. In the deep layers, to effectively 
process and consolidate features across scales, we 
choose to use a single pipeline with skip layers to 
preserve spatial information at each resolution which 
is proposed in Hourglass. 26 

Finally, the first five layers of PointRefine-Net are 
connected with Dense-connection, and the output part 
with Hourglass-connection26. Based on the structure, 
PointRefine-Net becomes a simple, minimal deep 
learning detection network that has the capacity to 
capture all of these features and bring them together 
to output pixel-wise predictions.  

In the process of key point detection, the input of 
PointRefine-Net is an inaccurate bounding box con-
taining UAV target detected by BboxLocate-Net net-
work. After the image resolution is resized to 30 × 30, 
the convolution operation is carried out. The output 
tensor only contains the key point coordinate infor-
mation (x, y). Fig.4 shows the optimization process of 
PointRefine-Net from the inaccurate bounding box 
detected by BboxLocate-Net to the accurate point. 
 

 
Fig. 4.  Schematic diagram of error coordinate correction. 
The red dot is a wrong detection result. The green dot indi-
cates the corrected result. 

The only task of PointRefine-Net network is to 
predict the key point coordinate vector. For a UAV 
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head key point, Eq. (11) is the loss function of the 
head key point regression task. 

  
2

2 2

0 0

ˆ ˆ( )
S B

obj
ij i i i i

i j

Loss I x x y y
 

       (11) 

where xi and yi represent the center coordinates of the 
predicted i th grid. ˆix and ˆiy stand for actual position 

parameters from training data of the i th grid. 

3.4. Vision-based localization algorithm and workf
low 

Combining with sub-section 2.2 and the detailed 
description of the cascaded detection models, we 

present our overall location algorithm flow chart. 
When actually detecting the UAV target, first, the 
BboxLocate-Net network receives the complete image 
and predicts the bounding box coordinate of the UAV 
target. Then, combining with PTUs parameters, we 
calculate the UAV spatial position based on 
EKF-based object spatial localization algorithm3 and 
check the motion continuity. If the coordinate is 
checked as an error point, we take the local ROI pre-
dicted by the BboxLocate-Net as the input of second 
level network. Finally, PointRefine-Net can precisely 
correct the key point coordinates in this ROI. The 
details are shown in Table 1. 

 

Table 1  UAV target location method based on cascaded deep learning models. 

UAV target location method based on cascaded deep learning models 
Input： 

Captured images I 
PTU attitudes (yaw, pitch) 
UAV dataset with labels M 

Output：UAV localization coordinates (x, y, z) 
BL-Net and PR-Net Training Procedure： 

for batch in M: 
for Xi in batch: 

a) Obtain the BboxLocate-Net image label：Category C and Bbox coordinate (x, y, w, h), PointRefine-Net image 
label：key point coordinate (x, y) 

b) Initializing Network parameters and forward propagation.  
while Xi = true do: 
    if Loss >= T: 

a) Backward propagation  
b) Gradient descent with momentum 
c) Forward propagation, get Loss value 

           else: Save model: obtain the BL-N and PR-N 
        end 

end 
end 
Test Procedure： 

Step 1: BboxLocate-Net image object detection; 
a) Resize the captured image resolution to (320,240) 
b) Forward propagation: predict Bbox coordinate (x, y, w, h) 
c) Suppression Bbox of t0 < 0.6 
d) Non-maximum Suppression 
e) Object detection result：Bbox center (u, v) 

Step 2: EKF-based object spatial localization algorithm and Motion continuity judgment； 
a) Get positioning result (x, y, z) from（u, v）and PTU attitudes (yaw, pitch) 

b) Motion continuity judgment: 
if (x, y, z) is a wrong point： 

Go to Step 3：PointRefine-Net receives the key ROI (x, y, w, h)； 

         else:  
Return the final positioning value (x, y, z) 

Step 3: PointRefine-Net image key point detection; 
a) Resize the captured image resolution to (30, 30) 
b) Forward propagation: predict key point coordinate (u, v) 
c) Get positioning result (x, y, z) with EKF-based localization algorithm and Return (x, y, z). 
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4. Cascaded deep learning model-based detectio
n experiment 

Aiming at the performance evaluation of the novel 
target detection method proposed in this paper, we 
carry on the contrast analysis between the image de-
tection performance and the real-scenario flight tra-
jectory solution. In the image target detection exper-
iment, the experimental data comes from a large 
number of UAV landing mixed images generated by 
actual and simulation flight experiments. We design 
the following two groups of experiments to compare 
the cascade deep learning model with other classical 
detection algorithms in terms of real-time and accu-
racy performance. 

(1) The first experiment verifies the accuracy and 
real-time performance of BboxLocate-Net by com-
paring it with several classical deep learning target 
detection algorithms. 

(2) The second experiment analyses the detection 
accuracy of PointRefine-Net and BboxLocate-Net, and 
proves that the second level network has certain op-
timization ability for the results detected by first level 
network. 

4.1. Dataset and Evaluation Protocol 

In this study, we train BboxLocate-Net network 
based on open source framework Darknet and 
PointRefine-Net on Caffe. The testing facility is a PC 
device with an internal storage 64GB and an operat-
ing system Ubuntu 14.04; CPU is i7-5930K, and GPU 
is NVIDIA GeForce GTX 1080ti. 

Our previous research has successfully carried out 
several experiments under good weather condi-
tions.3,9,13 For meeting the needs of deep learning, we 
present an upgraded version of our self-constructed 
dataset which includes images from our previous da-
taset and new extracted images captured in the simu-
lation system. Our new dataset not only contained a 
larger number of images but also was gathered in 
more challenging weather conditions (stronger wind 
smog and heavy snow). The UAV position can also be 
set up in the distance and attitudes to expand the di-
versity of data samples. The dataset used in the ex-
periment is an integration of simulated and actual 
datasets, of which the mixed train dataset consists of 
actual train dataset and simulated dataset, totaling 
13,350 pictures. And the mixed validation dataset 

includes the actual validation dataset and the simula-
tion validation dataset, with a total of 1500 pictures. 
For real-scenario flight application, we only test our 
algorithm on the actual flight dataset. 

In this section, four evaluation indexes are adopted 
for evaluating cascade deep learning networks. We 
use mean average precision (mAP) and frames per 
second (FPS) to evaluate the proposed BboxLo-
cate-Net model. And the performance of PointRe-
fine-Net is measured with the average detection error 
- “Mean Error” and the failure rate of each key point - 
“False Rate”. 

The above mentioned two evaluation indexes mAP 
and FPS both have clear meanings in the target detec-
tion field. We won’t define them here. The Mean error 
defined in this paper is measured as:  

   ˆ ˆ|| , ( , ) ||
100%

.

u v u v
MeanError

BBox w


   (12) 

where (u, v) and ˆ ˆ( , )u v  are the ground truth and the 

detected position. BBox.w is the width of the bounding 
box detected by BboxLocate-Net. 

In order to evaluate the accuracy of network pre-
diction results, we define another indicator: False 
Rate. For the key point detection result of each frame, 
if the error is larger than 5%, it is considered the de-
tection result of this frame as a failure. This means 
that the key point position error in each direction 
cannot be greater than 5% of the target area. In a 
group of experiments, the key point detection accu-
racy is defined as the ratio of the number of key 
points detected failure to the total number of key 
points. 

4.2. BboxLocate-Net model-based detection experi
ments 

High precision target detection in image is the 
foundation of high accuracy positioning in stereo vi-
sion system. At the same time, the real-time perfor-
mance of the detection algorithm is also the key fac-
tor for the system to be practical. 

To make a fair comparison between BboxLo-
cate-Net and other algorithms in real time and accu-
racy, we have trained all kinds of deep learning 
methods20,28,29,30 under the same conditions. Table 2 
summarizes the training parameters we used on train-
ing the UAV detection model. The training details of 
the network are as follows. 
 

 
Table 2  Table of training parameters of five deep learning algorithms. 

 
BboxLocate-Net YOLO V3 YOLO V3-Tiny YOLO V2-Tiny MobileNet-YOLO 

Input size (unit: px) 320×240 320×240 320×240 320×240 320×240 
Number of epochs 150000 150000 150000 150000 150000 

Batch size 64 64 64 64 64 
Initial Learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 

Momentum 0.9 0.9 0.9 0.9 0.9 
Decay 0.0005 0.0005 0.0005 0.0005 0.0005 

Backbone  BboxLocate-Net Darknet-53 Darknet-21 Darknet-19 Mobilenets v1 
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The initialization of PointRefine-Net parameters is 
the same as that of BboxLocate-Net. Its input image 
resolution is 30×30, and the batch size is set to 32. We 
also use small batch random gradient descent to opti-
mize network parameters. The network trained about 
150000 times in total, and stopped training when the 
loss value was less than 0.002. 

Using mixed landing dataset, we compared the 
proposed BboxLocate-Net detection results with that 
obtained by state-of-the-art CNN object detectors 
such as MobileNets-SSD29,30, YOLO V2-Tiny28, 
YOLO V3-Tiny20 and MobileNets-YOLO20,29. We use 

mAP and FPS as comparison indicators for these al-
gorithms. The performance comparison of our algo-
rithm and the existing state-of-the-art approaches is 
shown in Table 3. Our approach is significantly better 
than MobileNets-SSD and YOLO V2-tiny approaches. 
On the other hand, our tiny network, BboxLocate-Net, 
achieves an AP of 0.963 and FPS of 503. It outper-
forms most other algorithms, and is more efficient in 
terms of model size and computation complexity 
(GFLOPs). Fig.5 shows the partial detection results of 
different CNN detection algorithms.

Table 3  The Comparison of mAP value and FPS at IoU = 0.5 of different CNN detectors. 

Algorithms Sunny Rain Snow 
Entire Dataset FPS 

8:00 12:00 17:00 8:00 12:00 17:00 8:00 12:00 17:00 
BboxLocate-Net 0.96 0.97 0.95 0.96 0.98 0.98 0.97 0.96 0.93 0.963 503 

YOLO V3 0.98 0.97 0.94 0.98 0.97 0.95 0.97 0.98 0.95 0.966 31.89 
YOLO V3-Tiny 0.93 0.94 0.95 0.91 0.94 0.92 0.94 0.95 0.91 0.932 221 
YOLO V2-Tiny 0.91 0.90 0.89 0.89 0.93 0.91 0.92 0.94 0.90 0.910 230 
MobileNets-SSD 0.91 0.93 0.92 0.94 0.91 0.92 0.89 0.91 0.94 0.919 289 

MobileNets-YOLO 0.89 0.91 0.89 0.91 0.94 0.91 0.92 0.93 0.94 0.916 291 

 

 
Fig. 5.  The test results of different CNN algorithms. 

 

4.3. PointRefine-Net model-based detection experi
ments 

For the performance analysis of PointRefine-net 
network, we take Mean Error and False Rate as eval-
uation indexes. In order to test the key point posi-
tioning effect in the algorithm, we synthetically ana-
lyzed the positioning results of six UAV key points 
and compared the detection results before and after 
PointRefine-Net. Fig.6 shows the comparison of the 
Mean Error and False Rate between PointRefine-Net 
and BboxLocate-Net when detecting six key points. 
Compared with BboxLocate-Net, the detection results 
of PointRefine-Net have improved the accuracy to 
some extent and can be used as a correcting network 
for error points. Fig.7 shows the comparison of sev-
eral detection results before and after PointRefine-Net 
correction.  

 
Fig. 6.  Comparison of detection results at 6 key point
s before and after coordinate correction (a) Mean Erro
r；(b) False Rate

 

 

Fig. 7. Comparison of key point detection results before and after the coordinates correction. 
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5. Real-scenario flight localization experiments 

The real-scenario flight localization experiments 
are based on the ground-based visual system men-
tioned above. The runway baseline is about 10.77 
meters. The high precision PTU is set on both sides of 
the runway and a DFK 23G445 camera is fixed on the 
PTU. Each of PTU has two degree of freedom to ex-
pand the search field. At the same time, the high posi-
tion resolution (0.00625 degrees) and high rotation 
speed (50 degrees/second) make a higher positioning 
accuracy. The target detection method mentioned in 
the paper is used to process the images collected by 
the two cameras, and then the positioning results are 
compared with the previous work.  

To comprehensively verify the performance of our 
algorithm in real-scenario flight, we take the cascaded 
deep learning detection algorithm proposed in this 
paper and EKF-based localization algorithm3 as the 
solution algorithm, and design the following two 
groups of flight experiment. 

(1) The first group is based on Chan-Vese algo-
rithm, GOTURN algorithm and Bboxlocate-net algo-
rithm to calculate the UAV space trajectory, and to 
compare the accuracy and real-time capacity. 

(2) To prove the better accuracy and robustness of 
the system after the PointRefine-Net coordinate cor-
rection algorithm, the second group mainly compares 
the influence of PointRefine-Net coordinate correc-

tion algorithm and Bboxlocate-net algorithm on the 
accuracy and robustness capacity. 

5.1. BboxLocate-Net model-based localization expe
riments 

(1) Experiment 1.1: Accuracy experiments without 
PointRefine-Net 

Fig.8 shows autonomous landing trajectories and 
localization errors in X, Y and Z directions. One tra-
jectory is calculated by EKF-based localization algo-
rithm. The blue trajectory is generated by DGPS as a 
reference trajectory, and the yellow, light blue and red 
ones are generated by Chan-Vese, GOTURN and 
BboxLocate-Net algorithms, respectively.3,13 The blue 
area, green area and yellow area in Fig.9 represent 
three stages of approaching, descending and taxiing in 
the landing process. The root-mean-square error 
(RMSE) in each axis using EKF is presented in the 
right of the Fig.9.  

According to Fig.9, the BboxLocate-Net localiza-
tion algorithm reduces the deviation to some extent at 
all three axes, especially in the "Air&Ground" stage, 
the trajectory generated by BboxLocate-Net has a 
smaller deviation than that of Chan-Vese and 
GOTURN algorithm, which shows a significant im-
provement to autonomous landing. In conclusion, the 
localization accuracy improvement brought by 
BboxLocate-Net localization algorithm shows greater 
significance to UAV autonomous landing. 

 

 

Fig. 8.  Localization results using different UAV detection algorithm. The blue trajectory is the reference trajectory generated 
by DGPS. The yellow, light blue and red trajectories are generated by Chan-Vese, GOTURN and BboxLocate-Net detection 
algorithm and EKF-based localization algorithm, respectively. The Y global axis is along with the direction of the runway. 
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Fig. 9.  Accuracy comparison of spatial positioning results. For the convenience of display, the error is displayed after taking 
ln(1+e). Comparison among Chan-Vese, GOTURN and BboxLocate-Net. The blue, green and yellow area on the left side of 
the picture respectively represent approaching, descending, taxiing stages. 
 

(2) Experiment 1.2: Real-time capability experiments 
without PointRefine-Net 

The real-time performance of the algorithm has 
always been a key and common problem in practical 
engineering applications, and it is also our focus. 

We compare the frames per second (FPS) of object 
detection with different algorithms, and these algo-
rithms are tested in the same equipment, which is a 

PC with i7-5930K CPU and 64 GB internal storage. 
The results are shown in Table 4. The detection speed 
of BboxLocate-Net can reach 500fps, about 500 times 
of Chan-Vese algorithm and 3 times of GOTURN 
algorithm. Compared with Chan-Vese algorithm and 
GOTURN algorithm, our method has great progress 
in real-time capability.

 

Table 4  RMSE with EKF at each axis of the actual landing experiments and FPS using three different detection methods. 

Index Algorithm X(m) Y(m) Z(m) FPS 

T1 
Chan-Vese 0.3205 2.8605 0.1530 10.23±0.8 
GOTURN 0.3387 2.9821 0.1324 172.56±2.42 

BboxLocate-Net 0.3107 2.6782 0.1203 500.23±2.21 
 

5.2. Cascaded deep learning model-based localiza
tion experiments 

(1) Experiment 2.1: Robustness capability experi-
ments with PointRefine-Net 

Another trajectory is shown in Fig.10. The image 
detection results at point D and F with large deviation 

in Fig.10 are shown in Fig.11 (a) and (b). It shows 
that the location error is mainly caused by the wrong 
image detection results. We conduct PointRefine-Net 
operation at point D and F. The light blue dot and 
yellow dot are the results before and after correction, 
respectively. And the light blue trajectory and yellow 
trajectory in Fig.11 respectively represent the posi-
tioning results before and after correction. We can see 
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that PointRefine-Net shows better robustness than 
BboxLocate-Net algorithm. 

In Fig.10, the S area represents the case that part of 
the UAV goes out of the field of view. The detection 
results of four typical frames in S area are shown in 
Fig.12, Purple points are the detection results of Chan 
Vese, red points indicate the detection results of 

GOTURN, light blue and yellow points indicate the 
detection results before and after PointRefine-Net 
network respectively. When the target image coordi-
nates out of the FOV, the comparison of detection 
results also shows that PointRefine-Net has a more 
robust performance. 

 

 
Fig. 10.  Comparison of localization results before and after PointRefine-Net. In the figure, D and F are the two points with 
large error. The S area represents the case that part of the UAV target is outside the FOV. 
 

 

Fig. 11.  Comparison of key point detection results before and after PointRefine-Net (PR-N) coordinate correction. (a) The detec-
tion results at D point; (b) The detection results at F point. 
 

 

Fig. 12.  The key point detection results detected by four detection algorithms. G, H, I and J represent four typical frames out of 
the FOV in the S area. 
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(2) Experiment 2.2: Accuracy experiments with 
PointRefine-Net 

The light blue and yellow trajectories in Fig.10 are 
generated by different detection algorithms but same 
localization algorithms. Same as above, Blue is gen-
erated by DGPS, and light blue and yellow are gener-
ated by BboxLocate-Net and PointRefine-Net algo-
rithm, respectively. Table 5 shows the comparison of 
RMSE with EKF at each axis between the two algo-
rithms in actual landing experiments. It can be seen 
that the algorithm after PointRefine-Net has higher 

location accuracy. 
(3) Experiment 2.3: Real-time capability experiments 
with PointRefine-Net 

We use the flight trajectory mentioned in experi-
ment 2.1 to compare the location speed before and 
after PointRefine-Net. The results are shown in Table 
5. BboxLocate-Net algorithm has better real-time ca-
pability, but PointRefine-Net algorithm has higher 
location accuracy while the real-time capability is 
kept in the same level.

 
Table 5  RMSE with EKF at each axis of the actual landing experiments and FPS before and after PointRefine-Net. BL-N and 

PR-N denote the BboxLocate-Net and PointRefine-Net, respectively. 

Index Algorithm X(m) Y(m) Z(m) FPS 

T2 
BL-N without PR-N 0.2456 1.8082 0.1213 500.23±2.21 

BL-N with PR-N 0.2323 1.6002 0.1156 450.32±2.34 

 

6. Concluding remarks 

In this paper, a novel cascaded deep learning detec-
tion models has been proposed and developed for 
autonomous landing of unmanned fixed-wing aerial 
vehicles. A light-weight deep learning model enables 
a higher processing speed and makes the reasonable 
check and further optimization of UAV coordinates a 
reality. Flight experiment results validate that the ap-
proach attaches ~500 fps and higher positioning ac-
curacy than previous work. By making full use of the 
expansibility of the ground computing resources, we 
promote the visual guidance landing system to be 
practical. 

In the subsequent work, the developed algorithm is 
potentially extended to enabling detection and locali-
zation based on multiple key areas and key points. 
This algorithm is also to be developed from vi-
sion-based position to pose (position-and-attitude) 
during the autolanding. In details, multiple anchors 
are to be detected simultaneously to support pose es-
timation then. 
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