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ARTICLE INFO ABSTRACT

Communicated by S.-J. Wang Few-shot learning is a challenging and promising fundamental research. Inspired by recent advances in large
language models (LLMs), visual prompt tuning has achieved notable performance gains in few-shot tasks by
introducing only limited trainable parameters in the input space. Though effective, prompt tuning in few-
shot settings heavily relies on well-initialized soft prompts and often lacks generalizability. Additionally,
in certain specific fields, particularly in agriculture, there is a lack of high-precision fine-grained few-shot
classification models. To our knowledge, this study is the first to employ prompt tuning for fine-grained few-
shot plant disease classification (specific to disease severity). Specifically, we propose a novel Fine-grained
Meta Visual Prompt tuning (FMVP) framework to systematically explore how visual prompts can enhance
the generalizability of fine-grained few-shot domain-specific models. Firstly, a Sparsity-aware Meta Visual
Prompt tuning (SMVP) sub-module is proposed to learn a universal visual prompt initialization. SMVP utilizes
pixel-level optimizable visual prompts for input transformation, jointly with a novel sparsity-aware meta-
learning paradigm for parameter updating, boosting generalizability to unseen classes. Secondly, a Fine-grained
Cross-Alignment (FCA) module is introduced to explore intra- and inter-image relational patterns, enhancing
fine-grained recognition by extracting object-level cross-image semantic discriminative features. Extensive
experiments on datasets such as mini-ImageNet, CUB, and FPV have shown that our model outperforms state-
of-the-art (SOTA) models. Our work constitutes a valuable addition to domain-specific models for practical
applications.
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1. Introduction The specific domain data presents several unique challenges, in-
cluding high image collection costs, subtle class differences, noise

Deep learning’s success has brought about significant advancements sensitivity, reliance on expert annotations, low disease prevalence, and

in computer vision [1-5]. However, most methods can only operate
within fully supervised settings with ample available data. Specifically,
supervised learning struggles to rapidly identify novel classes using just
one or a few labeled samples, limiting its applicability in data-scarce
domains. This has sparked growing interest in learning from a limited
number of samples, a topic commonly referred to as “few-shot learning
(FSL)” [6-8].

In reality, it is difficult to acquire samples in many real-world
scenarios. For instance, plant disease recognition, a major concern for
agricultural experts, represents a typical fine-grained few-shot learning
problem. Rapidly detecting plant diseases is crucial for food safety and
sustainability. Yet, there are few disease labels due to low incidence,
high collection costs, and the requirement for manpower. Hence, a
domain-specific fine-grained few-shot learning (FG-FSL) model holds
significant importance and value.
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sample imbalance. These factors make fine-grained few-shot disease
recognition more complex than traditional classification tasks: lim-
ited and imbalanced data; bias from few-shot samples; few-shot prototype
construction; fine-grained disease recognition; shifts in granularity.

To tackle FG-FSL issues, we focus on high-precision few-shot and
fine-grained classification methods. In the traditional domain of few-
shot classification, most SOTA methods [9-12] fall into the category of
metric learning. Metric-based methods learn a feature extractor, which
transforms training and query samples into embeddings, then assign
query embeddings to the closest class [13,14]. Building upon these
baselines, many studies conduct further theoretical analysis or propose
various similarity metric strategies [9-11,14-17]. In the past two years,
the prompt tuning paradigm has shown greater influence in FSL. Vision-
language pre-training models [18,19] pre-train on a large number of
visual-textual pairs, covering almost infinite concepts in the real world,
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Fig. 1. A brief comparison schematic of our method with others. We briefly categorize
these differences as follows: (1) Input space transformation: visual-interpretable tailored
visual prompt, (2) Feature space transformation: cross-image alignment, (3) Tuning
paradigm transformation: novel sparsity-aware tuning strategy. The @ MVP introduces
prompt tuning into FSL to achieve good generalization. The (@ cross-alignment
operation performs self-attention and cross-alignment on images to focus on semantic
content within and across images, ultimately obtaining more accurate cross-image
discriminative features. The (3 sparsity-aware tuning algorithm updates gradients for
visual prompt tuning, generating few-shot-adapted visual prompt initialization.

demonstrating impressive generalization ability on various downstream
tasks [20-23]. Inspired by continuous prompt learning methods such as
Prefix-Tuning [24] in natural language processing (NLP), visual prompt
methods [20,25,26] achieve model fine-tuning by concatenating ad-
ditional optimizable vector sequences as prompts on original input
images. Though effective, prompt tuning performance is sensitive to
initialization in few-shot scenarios, requiring a time-consuming process
to find a good initialization, which limits the rapid adaptation ability
of pre-trained models. Additionally, prompt tuning may compromise
the pre-trained model’s generalizability, because learnable prompts are
prone to overfitting to limited training samples.

Another notable point is that existing methods typically innovate on
coarse-grained general datasets, overlooking the importance of mining
fine-grained features from a few classes. Mainstream works [27-33]
attempt to extend meta-learning research from general to fine-grained
classification by capturing discriminative parts of the entire image.
SPN [34] attempts to globally align images or features through pa-
rameterized transformations. Recently, in the study [35], a relation
matrix is adopted to highlight semantically relevant local features.
Other works [36,37] utilize object detection methods in the image or
feature space to separate the foreground and background, thus exclud-
ing background interference. While these methods are promising, little
attention has been paid to the discriminability of the extracted features.
Features are often extracted independently from labeled support and
unlabeled query samples, leading to insufficient discriminability in few-
shot scenarios. It is crucial, we believe, to align the discriminative
semantic features between query and support images for computing the
semantic similarity between each support-query pair.

Existing studies reveal three main limitations of current visual
prompts in few-shot settings: (1) Few-shot-adapted initialization is-
sue: Obtaining pixel-level visual prompt initialization for few-shot tasks
is challenging, and no work has introduced visual-interpretable tailored
prompts into FSL; (2) Prompt overfitting issue: due to the limited
training samples, prompts tend to overfit and degrade generalizability,
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highlighting the lack of a suitable prompt tuning paradigm in few-
shot scenarios; (3) Discriminative feature mining issue: existing
prompt-based methods fail to extract fine-grained cross-image semantic
discriminative features. In this paper, focusing on fine-grained disease
recognition (specific to severity), we explore a novel Fine-grained Meta
Visual Prompt tuning (FMVP) framework. It comprises two core mod-
ules: the Sparse-Aware Meta Visual Prompt tuning (SMVP) module and
the Fine-grained Cross-Alignment (FCA) module. First, we propose the
SMVP module to obtain a well-initialized visual prompt and achieve
strong generalizability in few-shot scenarios. SMVP applies padding-
type pixel-level optimizable visual prompts to the original image for
input transformation and introduces a novel two-stage meta-learning
paradigm called Sparsity-Aware MAML (SA-MAML) for gradient up-
dating. Secondly, to explore fine-grained discriminative features in
few-shot scenarios, we propose the FCA module. Fine-grained discrimi-
native feature localization across images is achieved by exploring intra-
and inter-image relational patterns through tandem access to the self-
attention module and cross-alignment module. A brief comparison of
our proposed two modules with other methods is shown in Fig. 1.
Finally, to address domain-specific FG-FSL challenges, we validate our
approach in real-world tasks using a fine-grained plant disease dataset.
This approach helps tackle new or rare plant disease classification
problems.
Our contributions can be summarized as follows:

» We propose a Sparsity-Aware Meta Visual Prompt tuning (SMVP)
module that integrates optimizable padding-type visual prompts
into a novel two-stage sparsity-aware meta-learning paradigm
(SA-MAML) for sparse tuning, explicitly optimizing the ability to
adapt to few-shot tasks and generalize to unknown classes.

A Fine-grained Cross-Alignment (FCA) module is introduced to
extract fine-grained discriminative information across images.
This module tandemly accesses the self-attention sub-module and
the cross-alignment sub-module to emphasize discriminative fea-
tures and align object-level cross-image semantic distributions,
respectively.

A comprehensive Fine-grained Meta Visual Prompt tuning
(FMVP) joint framework is proposed to effectively address poor
generalizability and discriminative representation bias issues in
FG-FSL. On the classical few-shot dataset mini-ImageNet, CUB,
and the domain-specific fine-grained dataset FPV, our approach
achieves optimal performance. Our work is a valuable addition to
domain-specific models for real-world applications.

The remainder of this paper is structured as follows. Section 2 sum-
marizes related work on plant disease classification, few-shot learning,
and fine-grained image recognition. Section 3 provides a detailed intro-
duction to the proposed SMVP and FCA methods. Section 4 describes
the experimental settings, ablation studies, and results analysis on
different datasets. Finally, Section 5 concludes the paper and outlines
future research directions.

2. Related work

This section provides a brief overview of the related research to
define and describe our proposed method. Initially, the current status
of plant disease classification is presented (see Section 2.1), followed
by an introduction to two closely related fields: few-shot learning (see
Section 2.2) and fine-grained recognition (see Section 2.3).

2.1. Plant disease classification

The rapid development of deep learning has permeated various
domains in agricultural scenarios. We focus on the automatic identi-
fication of plant diseases. To our knowledge, a considerable amount of
research has been inclined towards developing simple deep learning
networks for the automatic classification of specific plants [38-40].
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Haridasan et al. [38] use an ensemble of SVM and CNNss to classify spe-
cific varieties of rice plant diseases, achieving an accuracy of 91.45% on
the rice disease dataset. Using Faster R-CNN, Selvaraj et al. [39] achieve
an accuracy of 94.1% in detecting banana fruit diseases. Bulakhim
et al. [40] train and test AlexNet [41] and GoogleNet [42] models on
14 828 images of tomato disease leaves, achieving accuracies of 98.66%
and 99.18%, respectively. Other studies tend to focus on lightweight
models for classifying all detectable plant diseases [43-45]. In re-
search [43], a lightweight and cost-effective deep learning architecture
DenseNet-121 is proposed, achieving fast and efficient recognition on
the PlantDoc dataset with an overall classification accuracy of only
92.5%. In a recent study [44], Abdal et al. propose a transfer learning
method based on MobileNetV2 for resource-constrained environments,
achieving an accuracy of up to 98.56% on their dataset.

The quantity of plant disease images used in the aforementioned
research is sufficient for training deep-learning models. However, in
the real world, there is often a scarcity of training data for some plant
diseases due to low incidence rates and the high cost of collecting
images, with only a few or a few dozen examples available, making
it challenging to directly apply the above method.

2.2. Few-shot learning

Few-shot learning explores how to improve model performance with
limited labeled data. Given the relevance of the algorithms to our
research, we focus on two of them in particular.

Metric-based few-shot learning. In few-shot learning, most state-
of-the-art (SOTA) methods fall into the category of metric learning. The
metric learning-based method measures the similarity between query
and support images through learned embedding functions. During test-
ing, it classifies novel classes in the embedding space using similarity
measures, where samples of the same class are closer in distance than
those of different classes. Many studies are founded on these baselines,
conducting further theoretical analyses or proposing various similarity
measurement strategies, such as semantic orthogonality [11], Earth
Mover’s distance [46], Brownian distance covariance [9], negative-
margin loss [16], contrastive learning embedding [47], and query-
centric distance modulator [12]. In recent research, APPN [48] intro-
duces an adaptive similarity metric, achieving optimal performance on
multiple datasets. It further validates that the performance of model
metrics can determine the upper limit of accuracy in few-shot classifica-
tion. Abdal et al. [49] propose task attribute distance (TAD) as a novel
metric to quantify task relevance, establishing a theoretical connection
between task relevance and task adaptation difficulty.

Prompt tuning for few-shot tasks. In recent years, with the suc-
cessive introduction of large-scale pre-trained language models such
as GPT [50] and BERT [51], the prompt tuning paradigm has greatly
propelled the NLP development. There have been several preliminary
attempts to use visual prompts in the past two years. The earliest
visual prompt method [52] is inspired by continuous prompt learn-
ing methods like Prefix-Tuning [24], extending the design concept of
prompt tuning to computer vision, which directly incorporates prompt
parameters into the input image, creating a prompt image called visual
prompts. Based on this, Jia et al. [20] propose a method for tuning
visual prompts. This method modifies a pre-trained visual Transformer
by integrating selected updatable vectors into the input space. Typi-
cally based on Transformer architecture, such methods [20,25,53-55]
involve appending additional optimizable vector sequences as prompts
to either the original input sequence or the feature sequence at each
layer of Transformer. During fine-tuning for downstream tasks, the
backbone is frozen, and only the prompt vectors and the parame-
ters of newly added modules adapted for the downstream task are
optimized to achieve tuning. Differing from these methods, adding
pixel-level optimizable perturbations for prompt tuning can be applied
to various types of visual pre-training models (CNNs, Transformer,
etc.). These methods [26,56,57] add optimizable random perturbation
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blocks or rectangles directly to the pixel space of the original image,
independent of the model’s structure. Interestingly, this approach can
achieve performance comparable to fully fine-tuning models, while
being more parameter-efficient and cost-effective in terms of storage.
In few-shot tasks, prompt tuning demonstrates powerful performance
that is incomparable to fully fine-tuning.

2.3. Fine-grained image recognition

It is required for fine-grained image classification to capture the
most discriminative features amid the variations in poses of object
and background, and utilize these features for image classification.
These objects typically bear a striking resemblance in appearance,
making them difficult to distinguish even for humans. In fully super-
vised fine-grained image recognition, current methods [58-60] usually
employ attention mechanisms to identify the most discriminative re-
gions and then classify them using the extracted local features. In
recent research, more models [61,62] tend to partition and encode
input images using self-attention-based Transformers, extracting fea-
ture representations for studying fine-grained problems. In FG-FSL,
mainstream methods [27,30,31,63] aim to differentiate novel classes
with only a limited number of labeled samples from the base classes.
FSSA [64] proposes a spatial attention mechanism to focus on objects
and suppress background noise, enabling the network to quickly learn
where to attend. FYA [65] uses the cross-entropy loss between the
many-hot presentation and the attention logits to optimize the model,
focusing attention on key entities during fine-tuning. Although atten-
tion mechanisms have achieved remarkable success in various visual
tasks, relying solely on the self-attention of query images to obtain
discriminative features is often insufficient in few-shot scenarios. It
is necessary to associate discriminative features between images after
obtaining self-attention features.

In summary, few-shot learning and fine-grained classification have
made significant strides in various visual tasks [12,46,59,60], but there
is currently no effective method for fine-grained image classification
with only a few labeled samples. In contrast to these approaches, we
propose a novel Fine-Grained Meta Prompt tuning (FMVP) framework,
which combines prompt learning and few-shot learning methods. It
systematically explores how visual prompts can enhance generaliz-
ability. Meanwhile, unlike existing self-attention models, we propose
a Fine-grained Cross-Alignment (FCA) module to extract object-level
discriminative features across images, thereby enhancing fine-grained
recognition capabilities. We expect this model to effectively tackle
the FG-FSL challenge in specific domains, particularly plant disease
classification.

3. Proposed method

Formal Problem Definition. Following the standard definition in
prior works [13-15,66], we organize the learning process into an
episodic  paradigm. This paradigm  progressively  gathers
meta-knowledge from a repository of base tasks and rapidly adapts it
to novel tasks. The episodic paradigm is constructed as shown on the
left side of Fig. 2. Under this setting, our goal is to train the model
using labeled base classes dataset Dy,ge = {(x;,;) }‘.111, and apply the
classifier to unlabeled novel classes dataset D, ¢, Where x; is an input
image, y; represents its label, N indicates the number of base class
images and Dy g [) Dpovel = 9. To simulate few-shot testing scenarios,
we reorganize all samples in Dy,e. = {(x;, y,)}fil into a series of C-way
K-shot tasks. This C-way K-shot paradigm samples C classes, extracts
K labeled images per class as training samples, and then samples M
samples per class from the remaining images as query images. The
labeled dataset is referred to as the support set, while the unlabeled
dataset is called the query set. For each episode-task T (C-way K-shot
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Fig. 2. Complete Fine-grained Meta Visual Prompt tuning (FMVP) framework. We carefully design episode-wise meta-learning tasks. @ SMVP introduces prompt tuning into FSL
for input space transformation. Refer to Fig. 4 and Sections 3.1 for SMVP implementation details. @ FCA performs self-attention and cross-alignment operations on images to
obtain more accurate cross-image discriminative features. Refer to Fig. 6 and Sections 3.3 for FCA implementation details. @ The sparse tuning strategy SA-MAML updates the
visual prompt gradients to finetune a few-shot-adapted prompt initialization. Detailed information on SA-MAML is given in Fig. 3 and Section 3.2.

M -query), the support set S and the query set Q are defined as follows:
S= {(xf’yf)}fii (N,=K=C)

N
Q= {(xj’yj) j=q1 (Nq =15).

where K refers to the number of labeled images, C denotes the number
of unseen classes, and N, is the number of query images, usually set to
15. This few-shot task is known as a C-way K-shot setting.

Overall Framework. The proposed Fine-grained Meta Visual
Prompt tuning (FMVP) framework, as shown in Fig. 2, mainly consists
of a Sparsity-Aware Meta Visual Prompt tuning (SMVP) module, and a
Fine-grained Cross-Alignment (FCA) module. Specifically, SMVP adds
pixel-level optimizable visual prompts to the input image and proposes
a novel meta-gradient update strategy called Sparsity-Aware MAML
(SA-MAML). The model is trained on carefully designed meta-training
tasks to convert the original visual prompts into domain-generalizable
directions, thereby enhancing the few-shot model’s generalization abil-
ity. In FCA, we integrate the self-attention (SA) module and the cross-
alignment (CA) module to explore relational patterns within and across
images. This approach enables the discovery of fine-grained discrimina-
tive information by examining semantic correlations among images in
few-shot scenarios. The proposed approach can be trained end-to-end,
and detailed information about each component will be described in
the following sections.

Sections 3.1 and 3.2 discuss the design process of visual prompt
and the algorithm flow of SA-MAML (D and 3 in Fig. 2). Section 3.3
describes the implementation details of the two sub-modules in FCA (@
in Fig. 2).

@

3.1. Sparsity-aware meta visual prompt

In Sections 3.1 and 3.2, we provide a detailed introduction to each
module of SMVP, including (a) the design and selection of meta visual
prompts and (b) a novel meta-learning sparsity-aware update paradigm
SA-MAML.

Visual Prompt Selection. The current methods for concatenating
optimizable vector sequences [20,25,53] are typically only suitable
for pre-trained models with Transformer structures. In contrast, the
method of adding pixel-level optimizable perturbations for prompt
learning can be applied to various types of visual pre-training models.
These methods [26,56,57] do not depend on the model structure but
directly add optimizable random perturbation blocks or boxes to the in-
put pixel space. During fine-tuning in downstream tasks, prompt tuning
is achieved by optimizing the parameters of the perturbation. Inspired
by research [52,56], we utilize visual prompts to adapt a pre-trained

source model to downstream tasks without modifying any task-specific

model components. Specifically, visual prompts modify input images by

injecting a limited number of learnable parameters. Fig. 4 illustrates

three types of pixel-level visual prompt addition methods: padding,

stripe, and patch. Based on the experimental results in Section 4.3, we

choose the padding-type prompt for optimal performance.
Specifically, we consider a dataset

D= {(x;,01) 50 (%) }»

where x; is the original image in D, y; represents its label, and n
is the total number of images. The general form of input prompts is
formulated as follows:

¥(0,) =8 (%.0,,) €D = {(513) - (53)] @

where g(-, -) represents the input transformation of x with the learnable
visual prompt 6,,, and % is the result after adding prompts to the
original image.

We resize the input image x to a specific size i x i denoted as s'(x),
where s(-) represents the resize operation and i is the target size. Then,
we initialize the visual prompt as an 84 x 84 matrix and mask out
a portion of it. Different visual prompts can be created by masking
parameters of different shapes, positions, and sizes. In our selection,
the prompt is a central square matrix with four adjustable outer edges.
padding represents the width of each outer edge. According to the
results in Section 4.3, setting padding to 12 yields the best performance,
so we adopt it as the default value for all experiments. Finally, the input
transformation operation of SMVP is described as follows:

%(6,y) =8 (x,6,,) = s'(x) + 6724, x € D. 3)

max Pgbb;eL‘p (y | x+ 0017) : “)
vp

The visual prompt parameter tuning logic. Given a frozen pre-
trained model and a downstream task dataset D =
{(x1231) s (x4, ¥,) }> our goal is to learn a few-shot task-specific
visual prompt parameterized by 6,,. Let 6,, denote the backbone
parameters. During training, the model aims to maximize the likelihood
of the correct label y :

It is important to note that gradient updates are only applied to
the prompt parameters 6,,, while the model parameters 6 remain
frozen. During evaluation, the optimized prompts are added to all query
images.

Xiest ={x; +0 X, 40, (5)

vps -
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Fig. 4. Our visual prompt selection. Pixel-level visual prompts generally come in three
forms: padding, stripe, and patch. We chose the padding-type visual prompt as it has
been shown to deliver optimal performance.

3.2. Meta-prompt tuning via sparsity-aware MAML

After obtaining a set of meta-tasks through the episodic paradigm,
we propose Sparsity-Aware MAML (SA-MAML) to learn general features
among them and obtain the optimal meta-prompt initialization for
few-shot generalization.

Sparsity-Aware MAML overview. Unlike other MAML-based al-
gorithms [67,68], we propose a novel two-stage sparsity-aware meta-
gradient tuning paradigm: SA-MAML, as shown in Fig. 3. It efficiently
optimizes meta visual prompts to prevent prompt tuning from harming
the pre-trained model’s generalizability in few-shot scenarios.

Our two-stage meta-learning paradigm consists primarily of inner
loop updates and outer loop updates, comprising two optimization
steps. As shown in Fig. 5, the red dashed line represents the inner loop
update process, while the green line represents the outer loop update
process. In the inner loop, 6 is initialized for each meta-training task.
The updated prompt is temporarily saved and used to calculate the
loss for the current task. Compared to traditional MAML [67], we add
additional parameters 6,, to the initialization updatable parameters set.
Let 6,4 denote the final classification layer of the network. During the
inner loop update of SA-MAML, the backbone parameters are frozen,
and only a limited number of parameter updates are applied to 6,, and

ghead .

Sparsity-Aware inner loop. During SA-MAML training, we freeze
the network backbone and apply sparse tuning only to the visual
prompt 6,, and classification head 6),,, in the inner loop. Specifically,
we first define the model as a neural network with meta-initialized
parameters 6, and its model transformation process is denoted by f,.
We randomly sample C meta-tasks {Tl, ,TC} from the dataset D. For
each task T, the support set Sr, is used for inner loop updates, and the
query set Qp is used for outer loop updates. 01@ denotes the parameters
of task T, after i gradient updates. During each inner loop update, we
compute:

— p©
95{0) = 9:_1 — avgif_)lﬁsn <f9£,0_)|(9)) N (6)

for n across all tasks, L, < Sy (9)> represents the loss on the support
¢ n—1

set of T, after n — 1 inner loop updates. a represents the inner loop
update step size.

For SA-MAML, let 0y, .1p0ne = (01.....0;) be the k-layer main net-
work parameters. 0,, represents the visual prompt parameters, while
04e0q Tepresents the classification head parameters. In SA-MAML, the
parameters 6‘,(,”) of task T, after » inner gradient updates can be repre-
sented as:

(©)
)=, 0,5 (Vo)

O, )
(c)
(ehead )" 1 V(ehead)ffjl ESTC <f9f.c_)| (9)>

09 =|e,,...,

In this meta-learning paradigm, only the meta-visual prompt and
the network’s classification layer undergo inner loop updates.

Sparsity-Aware outer loop. In the outer loop, the meta-learner ag-
gregates knowledge from all tasks in a batch. Each meta-task calculates
the loss on its query set, and the meta-learner’s parameters are updated
through gradient descent based on these losses.

The total loss is calculated after processing all meta-tasks in a batch:

Loneta (0) = ZEQT (o) ®

where Lo, ( Sy (9)> represents the loss on the query set after n inner
loop updates. !
Then, in the outer loop, # is updated as:

0=0-nVyLpewa (), )
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Fig. 5. Diagram of MAML and SA-MAML. Difference between MAML and SA-MAML: In MAML (left), inner loop gradient updates are applied to all parameters 6, which are then
updated during the outer loop update. In SA-MAML (right), only the visual prompt parameters ,, and the classification head parameters 6, are sparsely tuned in the inner

loop. | The green boxes highlight all the differences in gradient updates between the two algorithms |.

Algorithm 1: Pseudo-code for SA-MAML
Require: p(T): distribution over tasks
Require: support set STC, query set QTC
Require: «, 7: step sizes
for c=1to C do

1
2 Sample batch of tasks T, ~ p(T)

3 for all T, do

4 Sample N examples from Sy,

5 Evaluate Vo L, (fo0)

6 Freeze the parameters of the backbone and only update

0,, and 0j,,4-
7 Compute perturbation 6,,:
©
8 (0,) — Vi, o Lsy, (o)
9 Compute parameters 0,,,:
(©

10 (0head) - av(ﬁhead)m ‘CS’I'C (fe(C) )

1 Compute all tuning parameters 6 via Eq. (7)
12 Sample data from S;. for meta-update
13 end for
14 Compute £ ., in a batch:

c

1 Lmewa )= 2y Loy, (f 9,5“(9))
16 Only update 6,,, and 6),,,
17 Update parameters () via Eq. (9)

18 end for

where 5 represents the outer loop update step size.

In the outer loop, again, only the meta visual prompt and the
network’s classification layer are updated. Please refer to the processing
flow of SA-MAML in Algorithm 1.

3.3. Fine-grained cross-alignment learning strategy

The presence of unknown labels and limited data make few-shot
fine-grained classification highly challenging. Existing fine-grained
methods extract features independently from labeled and unlabeled
samples, resulting in limited discriminative capability. In this work,
we propose a novel Fine-grained Cross-Alignment (FCA) module. It
models the semantic correlation between support features and query
features, thereby emphasizing fine-grained features. As shown in Fig. 6,
FCA consists of two parts: the self-attention (SA) module and the
cross-alignment (CA) module.

Self-Attention Module. The SA module is constructed similarly to
a typical attention model, generating self-attention maps for both query
and support samples. Inspired by CBAM [69], we integrate CBAM units

into the feature encoder to construct a novel attention module. The
simplified structure of SA is shown in the top half of Fig. 6. It focuses
on discriminative information from different perspectives using channel
attention and spatial attention. This module does not require separate
pretraining, simplifying the training process.

Specifically, we assume the network’s input feature map is I €
REXHXW We start by applying global average pooling (GAP) and
global max pooling (GMP) to aggregate spatial information, resulting
in two 1 x 1 x C feature maps: I ,fwg and I; . Next, the two feature
maps are separately fed into multi-layer perceptrons (MLPs) to obtain
weight coefficients between 0 and 1 using the sigmoid function . The
weighted feature map A° generated by the channel attention unit can
be expressed as:

A¢ = o(MLP(Avg Pool(I)) + MLP(MaxPool([I)))

o (W1 (W (15,)) + W1 (W0 (15,)) )

where ¢ stands for the sigmoid function, W; and W, are the learnable
parameters in the MLPs network.

The concatenated spatial attention module focuses on the important
spatial features. The final weighted feature map A’ is obtained through
these steps:

2 = o (([AvgPool(A° ® I); MaxPool(A° @ DIW , + b))

=o ([ @ Dy s @ Dy | W+ 1)),
where ® represents element-wise multiplication, W, and b, are the
learnable parameters in the network.

Let SA(-) represent the self-attention operation. Then, the output
features h € REH>W of SA is formulated as follows:

h=SAH =1 QU QI. 12)

10)

1D

The SA unit can be inserted into the backbone in two ways. For
Conv-4 [13], the units are inserted after each convolutional layer. For
ResNet-12 [13], they are inserted before the skip connections.

Cross-Alignment Module. The CA structure is shown in the lower
part of Fig. 6. We define the feature map I g extracted from the support
sample and the feature map I, extracted from the query sample.
CA generates cross-alignment maps for Iy and I,, which are then
used to weight the feature maps to obtain more discriminative feature
representations. We define that after SA, the support feature map and
the query feature map are denoted as hg and hQ, respectively. After
CA, the final support feature map and query feature map are denoted
as iy and h;), respectively.

As shown in Fig. 6, we first design a correlation layer to compute the
correlation map between g and k), and then use it to guide the gen-
eration of the cross-alignment map. To do this, we first reshape hg and

hg into RO™, where hg = [ﬁlsﬁls 71?] and hy = [_ﬁ'gﬁ’Q ,ﬁg],
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Fig. 6. The Fine-grained Cross-Alignment (FCA) module. FCA includes self-attention (SA) and cross-alignment (CA) modules. The upper part shows the self-attention module,
weighting internal features with channel and spatial attention sub-modules to produce self-attention feature maps: hg and h,. Subsequently, these features are fed into the lower
cross-alignment module for inter-image feature alignment, producing accurate cross-alignment feature maps: h; and h'Q.

withm(m=H ><W) being the number of spatial positions on the feature
map. h’ and h’ are the feature vectors of the ith spatial positions in
hg and hQ, respectlvely The CA module calculates the cosine distance
between the two sets of features to obtain a semantic relevance matrix:

_{em)
Tl

where (-,-) represents the dot product between two vectors, || - ||
indicates £, normalization.

In this way, the matrix CA, ; describes the local correlation between
the support features and the query features.

Learning Meta-Fusion Embedding. We construct a meta-fusion
layer to generate support and query cross-alignment maps, aligning
semantically related positions in the correlation matrix CA, ;. Taking
the support feature cross-alignment map as an example, we aim to
recompute the spatial position weight coefficients of the support feature
hg to align with the query feature hQ. Specifically, each row of the
semantic correlation matrix should be normalized to sum to 1, to be
used as a weighted vector for the support feature hg. The formula for
normalizing the semantic correlation matrix row by row is as follows:
= exp (CA,J) (14)

YTl e (CAy)

m, (13)

The final aligned support feature iy € RC*HW is obtained by
calculating the matrix multiplication between CA and the transpose
of the support feature hg (The calculation for the query feature h'Q is
similar):

iy = (CA-hs")" (1s)

4. Experimental result and analysis

In this paper, we concentrate on FG-FSL tasks, specifically exploring
disease classification that is precise to the severity levels. In this section,
we answer the following questions:

* Q1. Are all the modules in the ablation experiments necessary and
advanced? (Section 4.3)

Table 1
Datasets.
Dataset Total(#) Base(#) Val(#) Novel(#)
mini-ImageNet 100 64 16 20
CUB 200 100 50 50
FPV 59 30 14 15

* Q2. How does our method perform on coarse-grained and fine-
grained tasks in the general domain? (Section 4.4)

* Q3. What roles do different modules play in tasks of different
granularities? Which one plays the dominant role? (Sections 4.3
and 4.4)

* Q4. Is the model effective for tasks with extremely fine granular-
ity in the specific agricultural domain? (Section 4.5)

4.1. Experiments

Dataset Overview. To evaluate our model effectively, we conduct
experiments on common few-shot datasets like mini-ImageNet [70] and
Caltech-UCSD-Birds (CUB) [71], and also apply it to a fine-grained
plant disease classification dataset, Fine-PlantVillage (FPV).

mini-ImageNet is a subset of ImageNet extracted for few-shot tasks
and is a commonly used coarse-grained dataset. mini-ImageNet consists
of 100 different classes with images sized at 84 x 84 x 3. Following
the common split method in previous research [13,14,72], we divide
the dataset into 64 base classes, 16 validation classes, and 20 novel
classes.

CUB has smaller inter-class differences and higher recognition dif-
ficulty, making it a commonly used fine-grained few-shot dataset. CUB
contains 200 different species of birds. Similarly, following the standard
split method [13,16,73], we divide the dataset into 100 base classes, 50
validation classes, and 50 novel classes.

FPV is a fine-grained plant disease dataset that further refines the
categories based on PlantVillage (PV). It contains 10 plants and 61 plant
diseases, with labels refined to include disease severity levels in the
format “plant-disease-severity”’, as shown in Fig. 11. Due to two diseases
having fewer than five samples, we excluded them from the analysis.
For the fine-grained classification task, we select 30 diseases as base
classes, 14 as validation classes, and 15 as novel classes. The splitting
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Fig. 7. Ablation study on visual prompts. The backbone ResNet-12 is pre-trained on
the mini-ImageNet base classes and validated for accuracy on the novel classes. (a)
Experimental results for 1-shot settings. (b) Experimental results for 5-shot settings.
The padding-type prompt: border width = prompt size. The stripe-type prompt: fixed
length and width = prompt size. The patch-type prompt: square with sides = prompt
size.

of the three datasets is illustrated in Table 1.

Benchmarking Methods. In this paper, we compare our method
with earlier classical methods and recent state-of-the-art (SoTA) meth-
ods, such as QCDM [12], GLFA [11], STANet [10], DeepEMD [46],
DeepBDC [9], EMO [74], and IAM [75]. These methods have been
evaluated on multiple few-shot datasets and have achieved optimal
performance.

Ablation Studies. In ablation studies, we compare the performance
differences of SMVP, SA-MAML, and FCA when they appear inde-
pendently and in combination, validating the effectiveness of each
module.

Comparison with State-of-the-art. In the method comparison, we
conduct experiments on the above datasets with a unified setting of
5-way 1-shot or 5-way 5-shot. On datasets of different granularities,
we conduct quantitative and qualitative analyses of the model’s per-
formance. Specifically, for domain-specific tasks, we visualize visual
prompts, confusion matrices, cross-alignment heatmaps, t-SNE feature
reduction graphs, etc., to assist in the analysis.

4.2. Implementation details

Training settings. We use ResNet-12 [13] as the feature extrac-
tor backbone. The ResNet-12 backbone’s pretraining parameters are
trained using all labeled base class data. During meta-tuning, the
backbone’s parameters remain frozen, and only a few parameters of
the visual prompt and the classification head are sparsely fine-tuned
using SA-MAML. All images are resized to 84 x 84, momentum is set
to 0.9. The initial learning rate is 0.001, halved every 20 epochs. We
train each dataset for 500 epochs and select the best-performing model.
Experiments are conducted using PyTorch on an NVIDIA 2080 Ti GPU.

Evaluation metrics. The model’s performance is evaluated using
standard metrics [9,12,14]. We evaluate the model using 2000 ran-
domly sampled episodes (15 query images per class) in n-way k-shot
settings and report the average top-1 accuracy (%). We report the
classification accuracy of different methods on the mini-ImageNet, CUB,
and FPV datasets under 5-way 1-shot and 5-way 5-shot settings.

4.3. Ablation studies

In this section, we conduct experiments with ResNet-12 as the
backbone under the 5-way 5-shot setting. As shown in Table 2, to
further validate the effectiveness of SMVP, SA-MAML, and FCA, we
apply these modules individually or in combination to the baseline
model and conduct experiments on three datasets. For the design of
visual prompts, we also conduct multiple ablation experiments for
prompt types and sizes.

In Table 2, the mark (\/) is placed in the corresponding cell if the
module is added, otherwise, it remains blank. Marks (\/) in multiple
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Fig. 8. Results of ablation experiments for SA, CA, and FCA. Blue, green, and
yellow respectively represent experimental results using only SA, CA, and FCA. (a)
Experimental results on three datasets under 1-shot settings. (b) Experimental results
on three datasets under 5-shot settings.

cells indicate the simultaneous use of multiple modules. SMVP* refers
to an incomplete SMVP module using MAML, while SMVP refers to
the complete version using the proposed SA-MAML. FCA* denotes an
incomplete version using only SA, while FCA represents the complete
version incorporating both SA and CA.

The influence of Prompt Design. To investigate the effects of
prompt types and sizes, we conduct ablation experiments on three
different types of visual prompts. The image input size is fixed at
84 x 84, and the prompt size varies from 0 to 20. The backbone ResNet-
12 is pre-trained on mini-ImageNet base classes, and the test accuracy
is obtained on the novel classes. All prompt updates are driven by SA-
MAML, and FCA is applied to obtain fine-grained features. As depicted
in Fig. 7, the padding-type prompt achieves optimal performance with
a size around 12 in both 1-shot and 5-shot settings. Both too-large and
too-small prompt sizes lead to a significant decrease in performance in
few-shot scenarios. We chose a padding size of 12 for the padding-type
prompt, which has shown the best performance, as the default value
for all experiments.

The influence of SA & CA. The FCA module consists of the SA
sub-module and the CA sub-module. Fig. 8 illustrates the classification
results of SA, CA, and FCA separately under 1-shot and 5-shot settings.
Table 2 shows the classification results for SA and FCA when they
appear alone or in combination with other modules. Models using each
sub-module individually outperform those without attention modules,
demonstrating the effectiveness of both. SA can adaptively fuse channel
and spatial information to generate self-attention maps, while CA aligns
discriminative information across images for finer feature extraction.
FCA combines the advantages of foreground object enhancement and
cross-image semantic alignment, resulting in optimal performance.

The influence of FCA. Row 5 in Table 2 shows the classification
results with only FCA added. The experiments demonstrate that FCA
can effectively improve classification performance on all three datasets.
On the coarse-grained dataset, FCA achieves a classification accuracy
improvement of 1.12%. On the fine-grained datasets CUB and the even
finer-grained FPV, the classification accuracy improves by 1.26% and
1.62%, respectively. As the granularity becomes finer, FCA provides
a greater benefit to the model. This suggests that the cross-alignment
mechanism is crucial for extracting fine-grained features, especially
on datasets with finer granularity. In Fig. 9, we visualize attention
heatmaps for some samples from mini-ImageNet and CUB. The third
column shows the self-attention map after SA, and the fourth column
shows the cross-alignment attention map after FCA.

The influence of SA-MAML. Comparing rows 2 and 3, 6 and 8, and
7 and 9 in Table 2, the SA-MAML-driven models consistently outper-
form those driven by MAML in each group of comparative experiments.
Comparing rows 1 and 2, 4 and 6, it can be seen that the MAML models
even lead to a decrease in accuracy on some datasets. This effect may be
attributed to MAML’s simultaneous fine-tuning of all parameters, which
could impede convergence and the acquisition of effective initial visual
prompts. In the SA-MAML paradigm, only a few visual prompts and
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Ablation study of 5-way 5-shot on few-shot classification. The best results are displayed in boldface (mean + S.D.%). Numbers are in percentage

(%). The mark (\/) indicates that the module is used.

Baseline SMVP* SMVP FCA" FCA mini-ImageNet CUB FPV
(original MAML) (SA-MAML) (only SA) (SA+CA)

v 83.80 + 0.31 92.74 + 0.27 89.02 + 0.38
v v 83.62 + 0.30 93.11 + 0.33 89.48 + 0.33
v v 85.08 + 0.44 93.53 + 0.26 89.77 + 0.30
v v 84.73 + 0.28 93.61 + 0.30 90.06 + 0.27
v 84.92 + 0.35 94.00 + 0.31 90.64 + 0.40
v v v 84.71 + 0.36 93.72 £ 0.29 90.13 + 0.44
v v 84.98 + 0.30 94.04 + 0.32 90.40 + 0.41
v v v 85.39 + 0.41 94.01 + 0.26 90.76 + 0.29
v v 85.87 + 0.28 94.64 + 0.28 91.18 + 0.26

_ | Alignment

(c) mini-ImageNet # 3

o i

(d) CUB #3

Fig. 9. Visualization of attention heatmaps before and after applying CA. (a)(b)(c) visualize attention heatmaps on the coarse-grained dataset mini-ImageNet. (d) visualizes attention
heatmaps on the fine-grained dataset CUB. The third column displays self-attention heatmaps, while the fourth column shows cross-alignment heatmaps after applying CA.

classification head parameters are updated during inner and outer loop
gradient updates. This sparse tuning paradigm improves the model’s
generalization ability.

The influence of SMVP. In Table 2, comparing rows 1 and 3, SMVP
shows significant performance gains on all three datasets. It improves
by 0.79% and 0.75% on the fine-grained datasets CUB and FPV, respec-
tively. For the coarse-grained mini-ImageNet, the accuracy is greatly
increased by 1.12%. This is in contrast to the gain effect brought
by FCA. We infer that in coarse-grained tasks, SMVP plays a more
critical role than SA-MAML. SMVP utilizes the SA-MAML paradigm to
obtain well-adapted visual initializations for few-shot tasks, performing
well in tasks with general granularity, while FCA’s impact is relatively
minor due to the scarcity of difficult-to-classify fine-grained samples.
Fig. 10 visualizes the padding-type visual prompts trained under differ-
ent settings on three datasets. All prompts are generated through sparse
updates based on SA-MAML.

As shown in Table 2, the combination of SMVP and FCA achieves
the best performance. In conclusion, a series of ablation experiments
demonstrate the effectiveness and strong generalization ability of the
proposed modules.

4.4. Comparison with state-of-the-art

To evaluate our method, we compare it with classic and SOTA few-
shot algorithms [9-12,16,46,67,73,74,79-81] on the general few-shot
datasets, mini-ImageNet and CUB, using n-way k-shot settings.

Backbone Selection. In few-shot learning, mainstream methods
commonly use Conv-4 [13] and ResNet-12 [13] as backbone net-
works. We have also conducted comparative experiments using these
two backbone networks, comparing classical methods such as Relation
N [15], Meta-Baseline [73], Neg-Margin [16], etc., as well as SOTA
methods such as STANet [10] and QCDM [12]. As shown in Table 4,
our model achieves superior performance in most experiments on both
backbone networks, especially showing a more significant accuracy
improvement with the deeper ResNet-12. Due to our focus on solving
fine-grained few-shot classification problems, which require strong fea-
ture extraction capabilities, all experiments in the following sections
are conducted based on ResNet-12.

Table 3 shows the experimental results on mini-ImageNet and CUB
under 5-way 1-shot and 5-way 5-shot settings. Metric-based methods
outperform optimization-based and generation-based methods in accu-
racy, leading us to focus on comparing more metric-based methods.

Results for coarse-grained mini-ImageNet. In coarse-grained mini-
ImageNet experiments, our method outperforms other SOTA meth-
ods [9-12,46,74] in both 1-shot and 5-shot settings. In 5-shot tasks,
compared with the latest STANet [10], IAM [75], and QCDM [12],
the classification accuracy improved by 0.99%, 1.01%, and 0.96%, re-
spectively. In 1-shot tasks, our method achieves a 0.83% improvement
over the second-best STANet [10]. Combining the ablation experiments
in Table 2, we infer that SMVP is more suitable for general-grained
tasks, while FCA’s impact is more pronounced in fine-grained tasks.
In coarse-grained tasks with significant inter-class differences, SMVP
boosts few-shot generalization by adapting prompts to few-shot tasks,
while FCA struggles due to the easy classification properties of coarse
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Fig. 10. Visualization of padding-type visual prompts trained under different settings on various datasets. All prompts are generated through sparse updates using SA-MAML. The
top part of each dataset shows the task-specific visual prompt, while the bottom part shows the transformed input image.

Table 3

Comparison of the state-of-the-art few-shot classification algorithms on the mini-ImageNet and CUB dataset. Numbers are in percentage (%).

The best results are highlighted in bold (mean + S.D.%).

Methods mini-ImageNet CUB

Swaylshot Sway5shot Sway1lshot Sway5shot
Optimization-based
MAML [67] (2017) 57.40 + 0.47 72.42 + 0.65 70.44 + 0.55 85.50 + 0.33
E’BM [76] (2020) 64.45 + 0.34 81.04 + 0.53 78.22 + 0.61 89.34 + 0.35
EMO [74] (2023) 69.15 + 0.34 84.13 + 0.25 - -
Generation-based
MVT [77] (2020) - 67.67 + 0.70 - 80.33 + 0.60
TriNet [78] (2019) 58.12 + 1.37 76.92 + 0.69 69.61 + 0.46 84.10 + 0.30
Metric-based
Baseline [79] (2019) 60.00 + 0.44 80.55 + 0.31 71.85 + 0.46 88.09 + 0.25
Baseline++ [79] (2019) 63.25 + 0.44 81.67 + 0.30 75.25 + 0.45 89.85 + 0.23
Meta-Baseline [73] (2020) 64.17 + 0.45 81.41 + 0.31 78.16 + 0.43 90.04 + 0.23
Neg-Margin [16] (2020) 61.70 + 0.46 78.03 + 0.33 78.14 + 0.46 90.00 + 0.24
FEAT [80] (2020) 66.78 + 0.20 82.05 + 0.14 77.53 + 0.83 89.79 + 0.28
BML [81] (2021) 67.04 + 0.63 83.63 + 0.29 77.21 + 0.63 90.45 + 0.36
DeepEMD [82] (2020) 65.91 + 0.82 82.41 + 0.56 75.65 + 0.63 88.69 =+ 0.50
MCL [83] (2022) 67.36 + 0.20 83.63 + 0.20 - -
DeepBDC [9] (2022) 67.83 + 0.43 84.45 + 0.29 79.01 + 0.42 90.42 + 0.17
SetFeat12 [84] (2022) 68.32 + 0.62 82.71 + 0.46 79.60 + 0.80 90.48 + 0.44
DeepEMD v2 [46] (2022) 68.77 + 0.29 84.13 + 0.53 - -
1AM [75] (2023) 67.95 + 0.19 84.86 + 0.13 78.28 + 0.22 90.72 + 0.12
STANet [10] (2023) 69.84 + 0.47 84.88 + 0.30 80.46 + 0.47 90.88 + 0.30
GLFA [11] (2023) 67.25 + 0.36 82.80 + 0.30 76.52 + 0.37 90.27 + 0.38
MB-+QCDM [12] (2024) 66.76 + 0.23 84.91 + 0.18 83.54 + 0.29 93.01 + 0.21
HFCR [85] (2024) - - 84.39 + 0.19 93.40 + 0.11
Ours 70.67 + 0.36 85.87 + 0.28 85.50 + 0.40 94.64 + 0.28

features. In our main comparison, methods like STANet [10] and
GLFA [11] improve accuracy by proposing novel attention mecha-
nisms, while QCDM [12], DeepEMD [46], and DeepBDC [9] focus on
optimizing metric schemes. Their improvements are limited in terms
of few-shot-adapted prototype initialization and model generalization.
The experiments demonstrate that the carefully designed SMVP is more
suitable for coarse-grained few-shot tasks than classical metric-based
and optimization-based models.

Results for fine-grained CUB. Fine-grained images exhibit higher
intra-class variance and lower inter-class variance, posing significant
challenges in both supervised learning and few-shot learning domains.
On CUB, our model achieves 85.50% accuracy under 1-shot settings,
outperforming HFCR [85] by 1.11%, another model focusing on at-
tention mechanisms. In 5-shot settings, our model improves by 1.24%,
1.63%, and 3.76% compared to HFCR [85], QCDM [12], and STANet
[101, respectively. Combining the ablation experiments (Table 2) and
comparison experiments (Table 3) across different granularities, we

observe that FCA achieves higher performance gains on finer granu-
larity datasets. We believe this is because in fine-grained tasks, ex-
tracting discriminative information is more critical than enhancing
generalization ability. FCA explores relationships within and across im-
ages to extract fine-grained object-level semantic relationships, thereby
enhancing fine-grained recognition capabilities.

Finds of general few-shot classification. Combining ablation and
accuracy experiments, we can summarize the key findings of the model
as follows:

* (1) As the granularity level becomes finer, the roles of the two
sub-modules, SMVP and FCA, in FMVP also change.

(2) For coarse-grained tasks, SMVP’s few-shot-adapted generaliz-
ability obtained through sparse meta visual prompt initialization
is more critical, while FCA plays a supporting role.

(3) For fine-grained tasks, FCA obtains cross-image object-level
fine-grained information through self-attention foreground en-
hancement and cross-semantic alignment, achieving higher gains
compared to SMVP.
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Few-shot results with different settings of backbones (Conv-4 and ResNet-12). The best results are displayed in boldface (mean + S.D.%).

Numbers are in percentage (%).

Methods Backbones mini-ImageNet CUB
Swaylshot Sway5shot Sway1shot Sway5shot
) Conv-4 49.69 + 0.43 68.14 + 0.35 - -
Relation N [15] (2018) ResNet-12 5412 + 0.46 71.31 & 0.37 73.22 + 0.48 86.94 + 0.28
- .06 + 0. .83 + 0. .73 + 0. .77 + 0.
Baseine (79) 2019) RaNeiz 60001044 0551031 7iessode 5509502
. Conv-4 51.16 + 0.43 67.99 + 0.36 62.01 + 0.49 77.72 + 0.36
Baseline++ [79] (2019) ResNet-12 63.25 + 0.44 81.67 + 0.30 75.25 + 0.45 89.85 + 0.23
. Conv-4 51.35 + 0.42 66.99 + 0.37 58.98 + 0.47 75.77 + 0.37
Meta-Baseline [73] (2020) ResNet-12 64.17 + 0.45 81.41 + 0.31 78.16 + 0.43 90.04 + 0.23
Neg Margin [16] (2020) RaNeri2  Gl70s046  7m03a03  7ASia0ds 9019 s 004
Conv-4 57.32 + 0.47 73.00 + 0.37 65.57 + 0.44 81.89 + 0.35
STANet [10] (2023) ResNet-12 69.84 + 0.47 84.88 + 0.30 80.46 + 0.47 90.88 + 0.30
Conv-4 55.27 + 0.45 72.41 + 0.32 64.76 + 0.48 82.19 + 0.30
MB+QCDM [12] (2024) ResNet-12 66.76 + 0.23 84.91 + 0.18 83.54 + 0.29 93.01 + 0.21
ours Conv-4 57.46 + 0.50 73.24 + 0.33 65.94 + 0.43 82.40 + 0.30
ResNet-12 70.67 + 0.36 85.87 + 0.28 85.50 + 0.40 94.64 + 0.28
Coarse-Grained Fine-Grained agricultural experts for labeling. Currently, there are several open-
PV FPV source datasets available online, but their classification granularity
typically only reaches the level of disease categories. The FPV dataset,
unlike existing open-source datasets that generally classify diseases
-Corn at a basic level, refines disease classification to severity levels. This
4—* -Gray Leaf Spot granularity is crucial for tackling real-world agricultural challenges.
-Corn ) -general Fig. 11 displays examples from the FPV dataset. The left side
-Gray Leaf Spot shows coarse-grained category labels in the format “plant-disease”,
-Corn () while the right side shows fine-grained labels for each image in the
-Gray Leaf Spot format “plant-disease-severity”. PV is a plant disease image dataset that
-serious contains 54,305 images of plant disease leaf samples across 14 plant
species with 38 disease classes. FPV, built upon PV, further refines
-Apple & the categories, including 10 plants and 61 diseases, totaling 45,285
-Scab images. From Fig. 11, it can be observed that the same set of images
-general are assigned different labels under different fine-grained requirements.
-Apple ¢ Fine-grained classification in FPV poses a significant challenge, espe-
- Seab -Apple L 2 cially in classifying severity levels of diseases within the same disease
-Scab category.
-serious In this section, we will conduct a series of experiments on FPV using
n-way k-shot settings. In FPV, we randomly select 30 classes as base
I = jetaee classes and the remaining classes as validation and novel classes to
| —» -Black Rot Fungus perform FSL tasks.
rgeneral Results for finer-grained FPV. As shown in Table 5, compared
rGrape to experiments on mini-ImageNet and CUB, our method achieves the
[ Black Rot Fungus %&‘ jCaare highest performance improvement in both 1-shot and 5-shot settings
: :_b—SBel:Il'CDI;fOt L on the finer-grained FPV dataset. Specifically, in 5-shot experiments on

Fig. 11. Fine-grained examples from FPV. (a) The left side of the figure displays
coarse-grained categories in the format “plant-disease”, (b) while the right side displays
fine-grained categories in the format “plant-disease-severity”. Different shapes represent
different diseases (e.g., () = Apple-Scab), and colors indicate disease severity (e.g., Dark
green =Apple-Scab-serious). For the same image, its category is different at different
fine-grained levels. Our focus is on the more fine-grained disease classification on the
right side.

* (4) Our proposed FMVP achieves optimal performance in tasks of
different granularities by combining the advantages of both.

4.5. Domain-specific tasks

For specific tasks like plant disease classification, collecting a large
number of samples is often impractical due to the difficulty in deter-
mining disease symptoms. This process typically requires experienced

11

FPV, our method outperforms QCDM [12] and DeepBDC [9] by 1.12%
and 1.73%, respectively. In 1-shot experiments, our method improves
the accuracy from the second-best 80.06% to 81.86%. Combining
Tables 2 and 5, we can analyze the performance improvement trends
across the three datasets. In 5-shot (1-shot) settings, the performance
of the models on mini-ImageNet, CUB, and FPV datasets improves
by 0.96% (0.83%), 1.03% (0.96%), and 1.12% (1.80%), respectively.
We assume that the three datasets represent three different levels of
granularity. It can be observed that as the granularity becomes finer,
our method’s advantage over other SOTA methods becomes more pro-
nounced. In contrast, other metric-based methods, such as QCDM [12]
and DeepBDC [9], do not exhibit this characteristic. Overall, our model
demonstrates the most competitive performance in facing extremely
fine-grained tasks in specific domains.

Padding-Type Visual Prompt Visualization. Fig. 10 visualizes the
padding-type visual prompts obtained from training under different
tasks. A detailed comparison reveals that our model generates distinct
specialized task-adapted visual prompts for different datasets and dif-
ferent k-shot settings. In Fig. 10(c), the visualization results for FPV
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Fig. 12. Visualization of attention heatmaps on FPV. The figure displays six fine-grained disease samples with their attention heatmaps (second column without FCA, third column
with FCA). Different shapes represent different diseases (e.g., O = Grape-BlackRotFungus, A = Grape-LeafBlightFungus). Colors indicate the severity of the diseases (e.g., lighter colors
= general, darker colors = severious). X indicates misclassification, and ¢ indicates correct classification.

Table 5

Comparison of the state-of-the-art few-shot classification algorithms on the FPV dataset.
The best results are highlighted in bold (mean + S.D.%). Numbers are in percentage
(%).

Methods FPV

Swaylshot Sway5shot
Optimization-based
MAML [67] (2017) 69.96 + 0.46 82.84 + 0.40
E’BM [76] (2020) 78.02 + 0.42 88.34 + 0.40
Metric-based
Relation N [15] (2018) 74.00 + 0.42 85.86 + 0.36
Baseline [79] (2019) 71.96 + 0.37 87.25 + 0.22
Baseline++ [79] (2019) 76.11 + 0.40 88.73 + 0.31
Meta-Baseline [73] (2020) 78.25 + 0.41 88.76 + 0.26
Neg-Margin [16] (2020) 78.06 + 0.46 88.48 + 0.44
FEAT [80] (2020) 76.25 + 0.41 88.02 + 0.24
BML [81] (2021) 77.21 + 0.63 89.33 + 0.29
DeepEMD [82] (2020) 76.69 + 0.47 87.92 + 0.34
DeepBDC [9] (2022) 79.00 + 0.52 89.45 + 0.26
SetFeatl2 [84] (2022) 79.21 + 0.50 89.07 + 0.28
DeepEMD v2 [46] (2022) 78.86 + 0.46 89.20 + 0.28
STANet [10] (2023) 79.14 + 0.43 89.13 + 0.30
MB+QCDM [12] (2024) 80.06 + 0.51 90.06 + 0.17
Ours 81.86 + 0.32 91.18 + 0.26

are presented, with the top showing the visualized visual prompts and
the bottom showing the transformed input images. All prompts are
generated via sparse updates using SA-MAML.

Cross Alignment Visualization and Case Study. To demonstrate
FCA’s significance, we compare the attention heatmaps before and after
applying CA to samples from different datasets. As shown in Fig. 9, we
randomly sample images from mini-ImageNet and CUB and visualize
their attention heatmaps. The third column shows the self-attention
heatmap before adding CA, and the fourth column shows the atten-
tion heatmap after cross-alignment. For FPV, we select samples from
six fine-grained grape disease categories and visualize their attention
heatmaps. The first column in Fig. 12 shows the grape disease images,
which are traditionally classified into three categories. However, in
this study, they are divided into six classes. The second and third
columns visualize the attention heatmaps before and after adding FCA,
respectively. Observing Figs. 9 and 12, it is evident that FCA can
capture precise discriminative features through cross-image alignment
on different granularity datasets. In Fig. 12, class pairs 18-19 and 20—
21 are typically considered the most challenging pairs due to their very
subtle differences, making it difficult even for experienced agricultural
experts to distinguish between them. However, our model provides
correct results.

12

Real label
Real label
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Prediction

@ > @ o > >

(a) Confusion matrix with baseline (b) Confusion matrix with our model

Fig. 13. The confusion matrix for the baseline and ours. The numbers 18, 19, 20, 21,
22, and 23 on the axes represent six fine-grained disease categories of grapes. Each
column represents the predicted results, and each row corresponds to the real labels.
The six fine-grained categories shown align with the sample categories in Fig. 12.

Confusion Matrix and t-SNE Visualization. Fig. 13 shows the
confusion matrix comparing our method with another baseline. The
numbers on the axes represent six different fine-grained disease cate-
gories. In our confusion matrix, the classification results for all difficult-
to-classify fine-grained categories have been greatly improved. In ad-
dition, we visualize the t-SNE results of these features. Specifically,
we resample the data from FPV into three different granularity levels:
coarse, intermediate (coarse < x < fine), and fine. And then t-SNE
is performed on the high-dimensional representations of samples at
different granularity levels. For clarity, we present 2D t-SNE results in
Fig. 14. It is visually evident that our model has more easily classifiable
feature representations at all granularity levels.

Findings of domain-specific few-shot classification. Compared
with existing metric-based and optimization-based methods, FMVP
achieves significant performance improvement across different settings.
This highlights the proposed approach’s advantages:

* (1) SMVP enables the visual prompt to learn few-shot-adapted
initialization, thus greatly enhancing the model’s generalization
ability in general-grained few-shot scenarios.

(2) FCA explores intra- and inter-image feature relationships, ex-
tracting fine-grained cross-image discriminative features. In fine-
grained few-shot tasks where inter-class distributions are similar,
this model proves to be highly valuable.

(3) Our model excels in challenging domains with limited data
availability, such as fine-grained agricultural disease datasets,
showing significant performance gains.
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Fig. 14. 2D t-SNE visualization for different granularity levels. Categories range from
coarse (species-level) to intermediate (coarse < x < fine, disease-level) and fine
(severity-level). Numbers represent class IDs in FPV.

5. Conclusion

For fine-grained few-shot recognition, this paper proposes a novel
Fine-grained Meta Visual Prompt tuning (FMVP) framework that com-
bines popular prompt tuning and meta-learning methods. The Sparsity-
Aware Meta Visual Prompt tuning (SMVP) sub-module utilizes a unique
visual prompt construction method, a novel SA-MAML gradient up-
date paradigm, and a set of carefully designed meta-training tasks to
learn a few-shot-adapted prompt initialization, effectively improving
generalizability in few-shot scenarios. Additionally, unlike existing self-
attention models, we propose a Fine-grained Cross-Alignment (FCA)
module to explore discriminative features by extracting fine-grained
object-level cross-image semantic relationships. Extensive experiments
on classic few-shot datasets and the fine-grained plant disease dataset
demonstrate the effectiveness and superiority of our method. Without
a doubt, the proposed method is a valuable addition to fine-grained
few-shot classification and intelligent agricultural applications.
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