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 A B S T R A C T

Few-shot learning (FSL) is a promising approach for addressing the challenge of classifying novel classes with 
only limited labeled data. Many few-shot studies have elaborated various task-shared inductive biases (meta-
knowledge) to solve such tasks and have achieved impressive performance. However, when there is a domain 
shift between the training and testing tasks, the learned inductive biases fail to generalize across domains. In 
this paper, we attempt to suppress and correct inherent discriminative inductive biases from the source domain 
through source domain attention release and target domain attention reaggregation. We propose a few-shot 
learning framework, which systematically addresses the large domain shift between base and novel classes. 
Specifically, the framework consists of three parts: prototype-level attention calibration, feature-level attention 
calibration for attention release and reaggregation, and loss attention calibration. First, the prototype-level 
attention calibration module highlights key instances via prototype calibration, reducing the influence of noisy 
instances in few-shot settings. Second, the feature-level attention calibration module suppresses and corrects 
erroneous discriminative inductive biases from the source domain through base class attention release and 
novel class attention reaggregation, respectively. Finally, we incorporate the loss attention calibration module 
into the loss function to balance the discriminability and diversity of the classification matrix, mitigating the 
decline in generalization ability caused by erroneous discriminative features during domain shift. We conduct 
experiments on eight classic few-shot cross-domain datasets. The results demonstrate that, under varying 
domain shifts, our method improves performance, with average accuracy gains of 0.82% and 1.31% in the 
5-way 1-shot and 5-way 5-shot settings, respectively, compared to the existing state-of-the-art (SOTA) method.
1. Introduction

This paper challenges a real-world problem: few-shot learning for 
cross-domain scenarios. Existing few-shot models can quickly learn 
to recognize novel classes from a limited number of samples [1–4]. 
However, in practice, there is often a domain shift between the base 
and novel classes [5–7]. Compared to domain adaptation, cross-domain 
few-shot learning (CD-FSL) faces more severe challenges: the extremely 
limited number of novel class samples is insufficient to alleviate the 
domain gap between the base and novel classes. In this setting, the 
domain gap significantly affects the accuracy of novel class recognition. 
Therefore, learning models with strong cross-domain generalization 
capability is crucial for CD-FSL.

Under the few-shot setting [8,9], the novel classes are distinct 
from the base classes (but remain within the same domain), and each 
novel class has very few labeled samples. By explicitly constructing 𝑛-
way 𝑘-shot classification scenarios during training and testing, many 
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studies have effectively learned cross-task inductive biases [10] and 
reasoning mechanisms [11–13]. In recent years, state-of-the-art (SOTA) 
FSL methods [2,3,14,15] have built upon these baseline models with 
further optimizations, primarily focusing on metric learning and meta 
learning. Although efficient recognition of rare novel classes within 
the same domain has been achieved, existing FSL models often per-
form poorly when encountering with domain shifts between base and 
novel class tasks. Some highly effective meta-learning models even 
perform worse than simple fine-tuning models [6,16]. Domain adapta-
tion (DA) typically mitigates domain shift by learning domain-invariant 
features through adversarial training, aiming to generalize the learned 
model to different domains. Mainstream DA models [17–21] focus 
on unsupervised domain adaptation, effectively enhancing the model’s 
generalization ability in domain shift scenarios. However, it requires a 
large number of unlabeled samples in the target domain for training, 
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Fig. 1. The three-level calibration process diagram of P-R2-L. 1⃝  shows the t-SNE 
representation of five classes in feature space, where the two ★ represent the class 
prototypes of two classes before calibration. Before calibration, due to the influence 
of noisy support instances, they are located at the edge of the distribution. After 
applying PAC, the pentagrams ★ are corrected in 2⃝  and relocated to the center of 
the class distribution. In 3⃝, FAC suppresses the inherent distribution and refocuses on 
discriminative features, reconstructing a feature space with a better distribution. In 4⃝, 
the nuclear-norm constraint replaces the cross-entropy constraint, refining the decision 
boundary. As a result, the CD-FSL task achieves improved generalization ability.

and the class labels between the source and target domains need to 
remain consistent. In CD-FSL tasks, the novel classes do not overlap 
with the base classes, and the training samples are extremely limited. 
Existing domain adaptation methods are not well-suited to effectively 
address CD-FSL challenges.

In essence, CD-FSL faces challenges posed by both FSL and DA 
issues. A simple combination of existing FSL and DA methods does 
not provide an effective solution. To address domain shift in few-shot 
settings, many approaches have been proposed in recent years. One 
type of approach [7,22,23] focuses on constructing complex training 
scenarios to prevent overfitting to knowledge from a specific domain. 
For instance, the study in [22] employs a ‘‘domain switching learning’’ 
strategy to rapidly switch training domains and impose constraints, 
simulating 𝑛-way 𝑘-shot training under cross-domain conditions. Sim-
ilarly, ATA [23] considers the worst-case scenario of source domain 
distribution and employs task augmentation techniques to construct 
‘‘challenging’’ virtual tasks, increasing the diversity of training tasks 
and effectively improving the model’s robustness against domain shift. 
Another type of approach [7,24–27] simply integrates DA methods, 
incorporating adversarial learning and complex feature transformation 
for optimization. For instance, Tseng et al. [5] train a learnable feature 
transformation layer to simulate the distribution of image features 
extracted from tasks across different domains, effectively improving the 
generalization ability of metric-based models to unseen domains. Hu 
et al. [26] propose an adversarial feature augmentation (AFA) method 
that effectively aligns the distribution of target domain data, enhancing 
cross-domain performance. Although effective, these methods often 
face stringent learning conditions and complex learning processes dur-
ing base model training. When transferred to new tasks, they typically 
require retraining or suffer from overfitting issues.
2

To avoid the stringent prerequisites and complex learning processes 
of existing methods, we propose a general, simple, and efficient learn-
ing framework, P-R2-L, for handling source domain inductive biases. 
The framework suppresses and corrects the inherent erroneous induc-
tive biases from the source domain through simple source domain 
attention release and target domain attention reaggregation. We imple-
ment three core components: the Prototype-level Attention Calibration 
(PAC) module, the Feature-level Attention Calibration (R2-FAC) mod-
ule for attention Release and Reaggregation, and the Loss Attention 
Calibration (LAC) module. First, we propose a PAC module, which high-
lights key instances by performing cross-image prototype calibration 
between the support and query set, reducing the impact of noisy in-
stances in few-shot settings. Second, to suppress and correct erroneous 
discriminative inductive biases from the source domain, we propose 
the R2-FAC module. This module sequentially integrates the base class 
attention release (BAR) submodule and the novel class attention reag-
gregation (NAR) submodule. It first weakens the erroneous attention 
from the source domain and then refocuses fine-grained discriminative 
information by cross-aligning attention between query and support 
images. Finally, we incorporate an LAC module into the loss function to 
balance the discriminability and diversity of the classification matrix, 
mitigating the decline in generalization ability caused by erroneous 
discriminative features during domain shift. The calibration process of 
our P-R2-L framework is illustrated in Fig.  1. Through three levels of 
calibration — prototype, feature, and loss — we achieve an accurate 
cross-domain few-shot classifier.

Our contributions can be summarized as follows:

• We propose a similarity-weighted prototype-level attention cali-
bration (PAC) module. This module weights intra-class instances 
based on similarity comparisons between support and query im-
ages to achieve prototype calibration, effectively mitigating the 
negative impact of atypical instances on class prototypes in few-
shot scenarios.

• A cascaded feature-level attention calibration module (R2-FAC) 
is proposed to suppress and correct erroneous discriminative 
inductive biases from the source domain. This module sequen-
tially integrates the base class attention release (BAR) submod-
ule and the novel class attention reaggregation (NAR) submod-
ule to suppress erroneous inductive biases from the source do-
main and realign discriminative inductive information in the 
target domain, significantly improving generalization ability in 
cross-domain tasks.

• A loss attention calibration (LAC) module based on matrix nuclear-
norm constraint is introduced. This module leverages the prop-
erties of the nuclear-norm to balance the discriminability and 
diversity of the classification matrix, effectively mitigating the 
degradation of generalization ability brought about by erroneous 
discriminative features when crossing domains.

• We propose a three-level general CD-FSL framework, P-R2-L, to 
effectively address the issues of inductive bias and poor gener-
alization in cross-domain few-shot recognition. Extensive experi-
ments under the standard CD-FSL setting demonstrate that P-R2-L 
achieves SOTA performance.

This paper is organized as follows: Section 2 reviews relevant re-
search on FSL, DA, and CD-FSL. Section 3 offers an in-depth intro-
duction to the proposed methods PAC, R2-FAC, and LAC. Section 4 
details the experimental setup, ablation studies, and analyses of results 
across various cross-domain datasets. Finally, Section 5 summarizes the 
findings and discusses future research directions.

2. Related work

This section briefly introduces related research areas to define and 
describe our proposed method. We primarily focus on cross-domain few-
shot learning (in Section 2.3) and present the current state of research in 
two closely related fields: few-shot learning (in Section 2.1) and domain 
adaptation (in Section 2.2).
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2.1. Few-shot learning

Few-shot learning explores how to build models that can effec-
tively generalize to novel classes or tasks with limited labeled data. 
In recent years, most SOTA methods fall under the category of metric 
learning. Metric learning-based methods learn a mapping function that 
transforms data into a new feature space, minimizing the distance 
between same-class samples while maximizing the distance between 
different-class samples. Early metric learning works achieve signifi-
cant breakthroughs by introducing schemes such as cosine similarity 
[28], class prototypes [29], and adaptive metrics [10]. However, these 
methods have been proven to perform poorly under CD-FSL settings, 
often yielding worse results [16] than simple fine-tuning approaches 
when faced with cross-domain tasks. Previous work [6] provides a 
comprehensive review of this topic. In recent years, the best FSL 
models have been built on these baselines, attempting to propose more 
reasonable metric strategies or conduct in-depth theoretical analyses. 
Examples include global feature augmentation [3], minimum match-
ing cost [30], joint distribution distance metric [1], negative-margin 
loss [14], contrastive learning embedding [31], channel importance 
modulator [4], and hybrid feature fusion [32]. A large body of work has 
focused on class prototype optimization, such as multimodal prototype 
completion [33], generating representative prototype samples [34], 
and class prototype correction [35], among others. However, these 
methods often rely on fixed prototype generation or correction strate-
gies, which may lead to performance degradation in cross-domain tasks 
due to instability in prototype modeling or distortion during prototype 
generation. Recent research introduces APPN [36], which proposes 
a plug-and-play model-adaptive resizer and the corresponding metric 
scheme (ASM). It demonstrates that improvements in model metric 
schemes can significantly enhance model performance. TAD [37] in-
troduces the task attribute distance, which effectively quantifies the 
correlations between tasks and measures the adaptability challenges of 
different FSL models to new tasks. However, these FSL models share 
the common assumption that both base classes and novel classes come 
from the same domain, and none of them evaluate performance in 
cross-domain scenarios. They focus solely on performance optimization 
in classic few-shot scenarios with different classes within the same 
domain.

2.2. Domain adaptation

Domain adaptation aims to ensure that models trained on a source 
domain maintain strong performance when applied to a target domain. 
The basic assumption of domain adaptation is that the source and target 
domains share the same class and feature spaces, but differ in their data 
distributions.

Early domain adaptation methods typically rely on adapting shallow 
classification models to address domain shift issues, such as instance-
based adaptation [38] and parameter-based adaptation  [39,40].

Recently, influenced by deep neural networks and theoretical anal-
yses [41] by Shai et al. mainstream unsupervised domain adaptation 
(UDA) methods focus on using CNNs to explore learning domain-
invariant feature representations. Among these, metric-based UDA 
methods map features from the source and target domains to a common
reproducing kernel Hilbert space using predefined distance metrics, 
thereby explicitly reducing the differences between the two domains. 
Representative methods include DDC [42], which aligns cross-domain 
feature distributions by minimizing Maximum Mean Discrepancy
(MMD). Subsequently, DAN [43] and JAN [44] improve upon DDC [42] 
by minimizing Multi-Kernel Maximum Mean Discrepancy (MK-MMD) 
and Joint Maximum Mean Discrepancy (JMMD), respectively. The idea 
of adversarial domain adaptation originates from GANs [45], which 
use adversarial training to ensure that the features from the source and 
target domains significantly overlap in a common feature space, thus 
achieving domain adaptation. In this setup, the feature extractor and 
3

the domain classifier form an adversarial relationship: the domain clas-
sifier tries to correctly identify the domain, while the feature extractor 
aims to make it impossible for the classifier to determine the source 
of the features. Representative works include DANN [46], CDAN [47], 
ILA-DA [48], MCD [49], Li [50], LIN [51], PDA-Net [20], AAT [52], 
and others. Although effective, all UDA methods must ensure that the 
class label space remains consistent between the source and target 
domains. Some studies [53] explore scenarios with non-overlapping 
classes, but they still require partial class overlap and sufficient target 
domain samples for effective transfer. This differs significantly from 
the preconditions and task requirements of our cross-domain few-shot 
scenario.

2.3. Cross-domain few-shot learning

In CD-FSL tasks, novel classes and base classes come from dif-
ferent domains, with no overlap in class labels and extremely lim-
ited visible samples. In [6], extensive experiments on various FSL 
methods under cross-domain setting demonstrate that FSL fails to ef-
fectively handle significant domain shift issues. Clearly, due to the 
completely different task settings, existing domain adaptation meth-
ods cannot effectively address the CD-FSL problem. The targeted CD-
FSL model and benchmark were first introduced in FWT [5]. Sub-
sequent research mainly covers three types of approaches: methods 
learning generalized features  [5,12,54,55], methods utilizing auxil-
iary networks  [27,56,57], and pretraining-based methods  [58–62]. 
In recent years, task augmentation methods and adversarial learning 
approaches that integrate pre-adaptation have gained significant atten-
tion. The typical ATA method [23] addresses the worst-case scenario 
of source task distribution, proposing an adversarial task augmenta-
tion strategy that generates inductive bias-adaptive challenging tasks, 
which can be conveniently applied to various meta-learning mod-
els. PCS [63] proposes an end-to-end prototypical cross-domain self-
supervised learning framework that captures the semantic structure 
of categories in the data through intra-domain prototype contrastive 
learning and performs feature alignment through cross-domain pro-
totype self-supervision. However, its performance heavily depends on 
the effectiveness of cross-domain modeling, and the implementation 
is relatively complex. FLoR [7] extends the analysis of loss land-
scapes from the parameter space to the representation space, employing 
normalization techniques to smooth sharp minima in the representa-
tion space, thereby achieving long-range flatness of the minima and 
enhancing transferability. Recent research proposes the ANIL [64] 
method, which improves the feature reuse and adaptability of meta-
learning in few-shot cross-domain fault diagnosis by optimizing the 
inner-loop structure and introducing an adaptive loss function. GCC-
FSL [65] enhances feature representation by using graph convolution to 
align the data distributions of the source and target domains, address-
ing the domain shift problem in cross-domain few-shot classification. 
PKEMTL [66] addresses the few-shot fault diagnosis problem under 
varying working conditions by introducing sequence tracking and self-
supervised tasks for data augmentation, combined with multi-scale 
feature encoding and adaptive information fusion. ADAPTER [67] tack-
les the cross-domain few-shot learning problem under large domain 
shifts by employing a bidirectional cross-attention mechanism and 
the DINO training method, surpassing existing methods in the classic 
benchmark. Although these methods demonstrate some effectiveness, 
they often face strict learning conditions and complex learning pro-
cesses during base model training. When transferred to new tasks, they 
typically require retraining or suffer from overfitting issues. We aim 
to achieve efficient few-shot domain generalization through a simple 
learning setup and framework (see Fig.  2). In summary, despite signif-
icant achievements in few-shot learning and domain adaptation within 
their respective fields [4,20,37,52], there remains a lack of simple 
and efficient learning methods for cross-domain few-shot tasks. Unlike 
existing methods, this paper proposes a simple and efficient few-shot 
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Fig. 2. The complete P-R2-L framework diagram. We construct numerous 5-way 5-shot episodic training tasks, taking one of the meta-tasks as an example. 1⃝  PAC evaluates 
and reweights the importance of instances within a class to highlight key instances. 2⃝  FAC tandemly accesses attention release and attention reaggregation submodules to 
achieve source-domain erroneous discriminative information suppression and target-domain discriminative information relocalization, respectively. 3⃝  By constraining the matrix
nuclear-norm, LAC mitigates the loss function’s over-concern with discriminative information and balances the discriminability and diversity of the classification results.
cross-domain learning framework (P-R2-L) based on the straightfor-
ward idea of suppressing erroneous inherent biases from the source 
domain. It systematically explores how correcting the erroneous atten-
tion from the source domain at different stages can enhance the model’s 
cross-domain generalization performance.

3. Proposed method

Formal Problem Definition. CD-FSL aims to recognize novel
classes 𝐶𝑛𝑜𝑣𝑒𝑙 in the target domain using only a few training samples, 
by leveraging knowledge from base classes 𝐶𝑏𝑎𝑠𝑒 in the source domain. 
Notably, 𝐶𝑛𝑜𝑣𝑒𝑙 ∩ 𝐶𝑏𝑎𝑠𝑒 = ∅, and there is a domain gap between these 
two class sets. The model is initially trained on a base-class dataset 
𝐷𝑏𝑎𝑠𝑒 = {𝑥𝑖, 𝑦𝑖}𝑁𝑖=1, where 𝑦𝑖 ∈ 𝐶𝑏𝑎𝑠𝑒. Training at this stage typically 
minimizes cross-entropy loss:
 = 𝑐𝑙𝑠(𝐺(𝑥𝑖), 𝑦𝑖),

where 𝐺(𝑥𝑖) = ℎ(𝑔(𝑥𝑖)) outputs classification probabilities, consisting of 
a feature extractor 𝑔(⋅) and a classifier ℎ(⋅). The feature extractor 𝑔(⋅)
is then transferred to the novel-class dataset 𝐷𝑛𝑜𝑣𝑒𝑙 = {𝑥𝑢𝑖 , 𝑦

𝑢
𝑖 }
𝑁𝑢

𝑖=1, where 
𝑦𝑢𝑖 ∈ 𝐶𝑛𝑜𝑣𝑒𝑙. Due to limited training samples (1 or 5 per class), learning 
novel classes is challenging. For fair evaluation, current methods [7,22,
23] employ 𝑛-way 𝑘-shot episodes for training and testing. Each episode 
consists of a support set 𝑆 = {𝑥𝑠𝑖,𝑗 , 𝑦

𝑠
𝑖,𝑗}

𝑛,𝑘
𝑖,𝑗=1 for training and a query set 

𝑄 = {𝑥𝑞𝑖 }
𝑁𝑢
𝑞

𝑖=1 for evaluation. The model’s prediction for a query sample 
𝑥𝑞𝑖  is:
�̂�𝑢𝑖 = argmax𝐺𝑢(𝑥𝑞𝑖 ).

The model evaluates performance by sampling multiple tasks from 
the novel classes in the target domain and calculating the average 
accuracy.

Overall Framework. To address the CD-FSL problem, this paper 
proposes a novel P-R2-L few-shot learning framework. As illustrated in 
Fig.  2, our method mainly consists of a PCA module, an R2-FAC module, 
and an LAC module. Specifically, PAC enhances the contribution of key 
instances in n-shot tasks through prototype calibration, reducing the 
impact of atypical instances. In R2-FAC, the base class attention release 
submodule and the novel class attention reaggregation submodule are 
integrated to suppress incorrect source domain discriminative inductive 
biases caused by domain shift and reaggregate fine-grained discrimi-
native information in the target domain. LAC effectively balances the 
4

discriminability and diversity of classification results through matrix
nuclear-norm constraint, mitigating the loss of generalization caused by 
incorrect cross-domain discriminative features. The entire network op-
erates end-to-end, and the details of each component will be described 
below.

3.1. Prototype-level attention calibration module

For few-shot tasks, when the representation of a noisy instance 
differs significantly from others, this may result in a large deviation 
in the class prototype. As shown in Fig.  1, under the influence of 
atypical intra-class instances, the class prototype is likely to appear 
at the edge of the distribution, making it less representative. Existing 
models [4,7,27,37] typically use the average of all samples directly as 
the few-shot prototype, which can result in significant prototype bias 
under the influence of atypical instances. In this work, we propose 
a support-query cross-image PAC module to focus more attention on 
instances related to the query and reduce the impact of noise. We 
believe that, given a query, not all instances are equal and should be 
weighted according to their level of representativeness.

PAC performs prototype-level attention calibration based on the 
similarity weighting between support and query images. We first cal-
culate the cosine distance between intra-class instances and the query 
image. Instances that are closer to the query sample will be assigned 
greater weights in the prototype representation. The prototype cali-
bration process of the novel class is shown in Fig.  3, where Instance-𝑖
represents different instance representations within the support set, 𝑃
is the calibrated prototype representation, and 𝑤𝑖 represents the weight 
coefficients of different instances within the same class.

Specifically, cosine distance [13,28] is used to measure the simi-
larity between the support instances of the novel class and the query 
image, and this similarity is normalized to obtain the similarity score 
𝑚 and the weight coefficient 𝑤. We represent the 𝑘 instances in the 𝑛th 
class as: 𝑆 = {𝐬𝑛1, 𝐬

𝑛
2,… , 𝐬𝑛𝑘}. Then, the cosine distance between the 𝑖th 

query image 𝐪𝑖 and the 𝑗th instance in the 𝑛th class can be expressed 
as: 

𝐷𝑖,𝑗 = 1 −

⟨

𝐪𝑖, 𝐬𝑛𝑗
⟩

‖

‖

‖

𝐪𝑖
‖

‖

‖

‖

‖

‖

𝐬𝑛𝑗
‖

‖

‖

, (1)

where, ⟨⋅, ⋅⟩ refers to the dot product between two vectors, and ‖ ⋅ ‖
represents the 𝐿 -norm.
2



Neurocomputing 636 (2025) 130056M. Li et al.
Fig. 3. The PAC module. We compute the cosine distance between the query image 
and all the intra-class instances in the support set to get the similarity coefficient and 
weighting coefficient of each instance with respect to the current query image, and 
reweight the key instances and noise instances.

Fig. 4. Visualization of the attention transformation during R2-FAC calibration. The 
upper part of the figure briefly illustrates the movement trend of the attention factor: 
when attention is released, the attention factors are evenly scattered to the whole 
map region; when attention is reaggregated, the attention factors refocus on new 
discriminative regions. The lower part of the figure visualizes the attention heatmap 
before attention calibration, after attention release, and after attention reaggregation, 
respectively.

Then, the similarity coefficient is calculated using the computed co-
sine distance, and the similarity coefficient is normalized to obtain the 
weight coefficient. The similarity coefficient 𝑚𝑖,𝑗 and weight coefficient 
𝑤𝑖,𝑗 can be expressed as follows: 

𝑚𝑖,𝑗 =
1

1 −
⟨𝐪𝑖 ,𝐬𝑛𝑗 ⟩

‖𝐪𝑖‖ ‖𝐬𝑛𝑗 ‖

, (2)

𝑤𝑖,𝑗 =
𝑒𝑚𝑖,𝑗

∑𝑘
𝑗=1 𝑒

𝑚𝑖,𝑗
. (3)

Finally, the class prototype of the 𝑛th class is represented by weight-
ing all instance representations as follows: 

𝑝𝑛 =
𝑘
∑

𝑗=1
𝑤𝑖,𝑗 ⋅ 𝐬𝑛𝑗 . (4)

There are 𝑁 calibrated prototype distributions for the 𝑁 novel 
classes, which helps avoid bias caused by noisy samples. As shown in 
Fig.  3, the dark yellow pentagon represents the calibrated prototypes.
5

3.2. R2-feature attention calibration module

In this section, we provide detailed information about R2-FAC (see 
Fig.  4), including (1) the base class attention release (BAR) module and 
(2) the novel class attention reaggregation (NAR) module. An overview 
of our proposed R2-FAC is shown in Fig.  5, with the main contributions 
being: suppression of source domain discriminative inductive biases 
during testing, and the reaggregation strategy for novel class discrim-
inative inductive biases based on cross-alignment. These contributions 
will be discussed in detail below.

3.2.1. Base class attention release module
Large-scale and long-distance domain shifts often lead to signifi-

cant changes in discriminative features in the novel domain. Existing 
models [7,22,23,27] typically fail to detect this in time and instead 
complete the testing phase tasks based on the experience learned from 
the base classes. We approach this from another perspective: if these 
discriminative features change from training to testing, and the image 
feature representations fail to respond appropriately to this change, 
there should be a specific feature transformation that corrects the 
feature representations, leading to performance improvement. Our pro-
posed solution is to suppress the discriminative inductive biases from 
the source domain, thereby reducing the impact of incorrect inductive 
biases.

Let 𝑰 be the input image. After feature extraction using the function 
𝑔(⋅), we obtain the vector 𝐯 = 𝑔(𝑰) ∈ R𝑚, where the 𝑖th dimension 
is defined as the 𝑖th component of the feature, i.e., {𝑣𝑖}𝑚𝑖=1 represents 
the set of all 𝑚 dimensions. We define the following transformation 
function to apply the transformation to each dimension of the feature: 
�⃗�𝛼(𝑣𝑖) = 𝛼

√

𝑣𝑖 + 𝜖 + (1 − 𝛼)𝜎(𝑣𝑖), 𝑖 = 1, 2,… , 𝑚, (5)

where 𝛼 is a weighting coefficient, √𝑣𝑖 + 𝜖 represents the square root 
transformation, and a small positive number 𝜖 is introduced to ensure 
numerical stability, especially when 𝑣𝑖 approaches 0, to avoid gradient 
explosion. 𝜎(𝑣𝑖) is the sigmoid activation function. If 𝑣𝑖 <= 0, we 
directly set �⃗�𝛼(𝑣𝑖) = 0.

For the feature vector 𝐯, we can express the transformation for each 
dimension as follows: 
�̇�𝛼(𝐯) =

[

�⃗�𝛼(𝑣1), �⃗�𝛼(𝑣2),… , �⃗�𝛼(𝑣𝑚)
]

, (6)

here, each dimension 𝑣𝑖 undergoes the same non-linear transformation 
�⃗�𝛼 , and 𝜖 ensures numerical stability, preventing gradient divergence 
when 𝑣𝑖 → 0.

During the testing phase, this function is applied dimension-wise to 
each feature representation of the image. That is, when this transfor-
mation is applied, all image features for the target classification task 
are transformed, regardless of whether they are in the support set or 
query set.

To further analyze the behavior of the transformation during opti-
mization, we compute the gradient of the transformation function with 
respect to 𝑣𝑖. For 𝑣𝑖 ≥ 0, the gradient is: 
𝜕�⃗�𝛼(𝑣𝑖)
𝜕𝑣𝑖

= 𝛼 1
2
√

𝑣𝑖 + 𝜖
+ (1 − 𝛼)𝜎(𝑣𝑖)(1 − 𝜎(𝑣𝑖)), (7)

here, 𝜖 is a small positive number that ensures smooth processing, 
preventing the gradient from diverging as 𝑣𝑖 approaches 0. The first 
term 1

2
√

𝑣𝑖+𝜖
 ensures that as 𝑣𝑖 → 0, the gradient does not become 

infinite, while the second term is the derivative of 𝜎(𝑣𝑖).
We adopt a zeroing strategy when 𝑣𝑖 ≤ 0, with the core motivation 

of ensuring computational stability, enhancing feature sparsity and bal-
ancing feature values. Negative features may carry non-discriminative 
information in certain cases or even disrupt feature alignment. Zeroing 
effectively removes these unstable factors, allowing the model to focus 
more on high-confidence discriminative features. Additionally, this 
approach helps reduce disparities between feature values, mitigating 
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Fig. 5. The R2-FAC module. R2-FAC consists of base class attention release (BAR) and novel class attention reaggregation (NAR) submodules connected in series. The BAR submodule 
is shown on the upper part of the figure, which suppresses high-magnitude features and appropriately amplifies low-magnitude features to mitigate erroneous inductive bias from 
the source domain. Subsequently, the transformed feature maps �̇�𝑆 and �̇�𝑄 are fed into the NAR submodule on the lower part for discriminative feature alignment across images 
to obtain accurate novel class cross-attention feature maps �̇� ′

𝑆 and �̇� ′
𝑄.
the impact of extreme values and leading to a more uniform feature 
distribution, thereby improving the stability of cross-domain feature 
matching. Compared to alternative methods such as soft thresholding 
or learnable functions, our zeroing strategy achieves a better balance 
between computational efficiency, model convergence speed, and task 
generalization ability.

While direct zeroing can enhance computational stability and fea-
ture sparsity, it may also lead to information loss, affect gradient 
propagation, and potentially introduce negative impacts on cross-task 
adaptability and feature distribution. In some tasks, negative features 
may still play a crucial role. Therefore, future work could explore 
learnable functions or adaptive thresholding strategies as alternatives 
to direct zeroing to mitigate its negative effects.

One noticeable effect of this function is that it smooths the feature 
distribution: it suppresses high-amplitude features while appropriately 
amplifying low-amplitude features. The BAR module in Fig.  5 clearly 
illustrates this phenomenon, where we plot the feature amplitude trans-
formation process under various choices of 𝛼. The black line represents 
the original distribution, while other colors represent the transformed 
distributions. The transformed distribution becomes more uniform. 
Larger feature magnitudes imply that the model places more emphasis 
on those features. After base class attention release, incorrect inductive 
biases caused by the source domain are suppressed.

3.2.2. Novel class attention reaggregation module
The NAR module structure is illustrated in the lower part of Fig. 

5. For input images — support image 𝑰𝑆 and query image 𝑰𝑄 — we 
denote the resulting feature maps after {BAR, NAR} as {�̇�𝑆 and �̇�𝑄, 
�̇� ′
𝑆 and �̇� ′

𝑄}.
As shown in Fig.  5, The first step computes a correlation map 

between �̇�𝑆 and �̇�𝑄, which then guides the generation of the cross-
alignment map. To accomplish this, the feature maps �̇�𝑆 and �̇�𝑄 are 
reshaped into matrices of size R𝐶×𝑚, where: 

�̇�𝑆 =
[

�⃗�1
𝑆 , �⃗�

2
𝑆 ,… , �⃗�𝑚𝑆

]

, �̇�𝑄 =
[

�⃗�1
𝑄, �⃗�

2
𝑄,… , �⃗�𝑚𝑄

]

, (8)

with 𝑚 = 𝐻×𝑊  representing the number of spatial positions. Here, 𝑊 , 
𝐻 , and 𝐶 represent the width, height, and number of channels of the 
feature map, respectively. The terms �⃗� 𝑖  and �⃗� 𝑖  refer to feature vectors 
6

𝑆 𝑄
at the 𝑖th spatial position of �̇�𝑆 and �̇�𝑄. The cosine similarity between 
these vectors is then calculated to form a semantic relevance matrix: 

CA𝑖,𝑗 =

⟨

�⃗� 𝑖𝑄, �⃗�
𝑗
𝑆

⟩

‖

‖

‖

�⃗� 𝑖𝑄
‖

‖

‖

‖

‖

‖

�⃗� 𝑗𝑆
‖

‖

‖

, 𝑖, 𝑗 = 1,… , 𝑚, (9)

here, ⟨⋅, ⋅⟩ refers to the dot product between two vectors, and ‖ ⋅ ‖
represents the 𝐿2-norm. The matrix CA𝑖,𝑗 captures the local correlation 
between support and query features.

Learning Meta-Fusion Embedding. The meta-fusion layer gen-
erates cross-alignment maps by aligning corresponding positions ac-
cording to the correlation matrix CA𝑖,𝑗 . Taking the support feature 
alignment as an example, the goal is to reweight the spatial position 
coefficients of �̇�𝑆 to align with the query feature �̇�𝑄. For this, each 
row of the correlation matrix is normalized to sum to 1, ensuring that 
it acts as a weight vector for �̇�𝑆 . The normalization is performed as 
follows: 

CA𝑖,𝑗 =
exp(CA𝑖,𝑗 )

∑𝐻𝑊
𝑡=1 exp(CA𝑡,𝑗 )

. (10)

The aligned support feature �̇� ′
𝑆 ∈ R𝐶×𝐻𝑊  is computed by multiplying 

the normalized correlation matrix CA by the transpose of �̇�𝑆 (The 
calculation for the query feature �̇� ′

𝑄 is similar): 

�̇� ′
𝑆 =

(

CA ⋅ �̇�𝑇
𝑆

)𝑇
. (11)

Algorithm 1 provides the complete execution flow of the attention 
release and reaggregation mechanisms, which do not rely on accurate 
cross-domain shift modeling but instead address the channel bias issue 
in few-shot cross-domain tasks by optimizing key features. The BAR 
module releases erroneous attention in the source domain through a 
smoothing function, while the NAR module refocuses the key infor-
mation of the target domain through cross-image attention alignment, 
optimizing the learning of target domain features. Our framework relies 
on an adaptive attention mechanism, dynamically adjusting feature 
weights to enhance the model’s generalization ability. Even in cases 
where domain shift modeling is insufficient, it can still effectively 
focus on task-relevant features. The core computational processes in 
Eqs. (5) and (9)–(11) focus on feature smoothing and alignment, not 
depending on accurate cross-domain shift modeling, and are capable 
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Algorithm 1: Pseudo-code for Attention Release and Reaggre-
gation Strategy

Require: Support image 𝑰𝑆 , query image 𝑰𝑄
Require: Weight coefficient 𝛼, stability constant 𝜖

1 for each support image 𝑰𝑆 and query image 𝑰𝑄 do
2 Extract feature vectors 𝑣𝑖 from 𝑰𝑆
3 for each component 𝑖 = 1, 2,… , 𝑚 do
4 Apply feature transformation (Attention Release) as:
5 �⃗�𝛼(𝑣𝑖) = 𝛼

√

𝑣𝑖 + 𝜖 + (1 − 𝛼)𝜎(𝑣𝑖)
6 If 𝑣𝑖 ≤ 0, set �⃗�𝛼(𝑣𝑖) = 0
7 end for 
8 Update feature vector as:
9 �̇�𝛼(𝐯) = [�⃗�𝛼(𝑣1),… , �⃗�𝛼(𝑣𝑚)]
10 end for 
11 for each support map �̇�𝑆 and query map �̇�𝑄 do
12 Reshape feature maps into matrices :
13 �̇� =

[

�⃗�1, �⃗�2,… , �⃗�𝑚
]

14 Compute cross-alignment matrix (CA):
15 CA𝑖,𝑗 =

⟨�⃗� 𝑖𝑄 ,�⃗�
𝑗
𝑆 ⟩

‖�⃗� 𝑖𝑄‖‖�⃗�
𝑗
𝑆‖
, 𝑖, 𝑗 = 1, 2,… , 𝑚

16 Normalize the correlation matrix:
17 CA𝑖,𝑗 =

exp(CA𝑖,𝑗 )
∑𝐻𝑊
𝑡=1 exp(CA𝑡,𝑗 )

18 Reaggregate discriminative features as:
19 �̇� ′ =

(

CA ⋅ �̇�𝑇
)𝑇

20 end for 
21 Return aligned features �̇� ′

𝑆 and �̇� ′
𝑄.

of optimizing feature selection and attention allocation without perfect 
shifts modeling, thereby improving the model’s adaptability across 
different tasks.

3.3. Loss attention calibration module

In CD-FSL tasks, it is normal for certain classes to dominate among 
randomly selected 𝐵 batches of samples, while other categories con-
tain few or even no samples. In such cases, models using traditional 
loss functions tend to rely on ‘‘discriminative information’’ to clas-
sify samples near the decision boundary into the majority class [68–
70]. The continued convergence towards the majority class reduces 
prediction diversity, which is detrimental to cross-domain prediction 
accuracy. To achieve a more reasonable decision boundary, we intro-
duce matrix nuclear-norm constraint in the loss function to balance the 
discriminability and diversity of the classification results.

Measuring Discriminability with 𝐹 -𝑛𝑜𝑟𝑚. In traditional super-
vised learning, training with a sufficient number of labeled samples 
can lead to a well-distributed class representation and robust prediction 
performance. However, in few-shot scenarios, the data density near 
the decision boundary is high, especially for classes with fewer sam-
ples, which tend to be classified into the majority class [69,70]. To 
improve the prediction results in fine-grained few-shot classification, 
common methods [69–71] enhance discriminability by minimizing 
cross-entropy. Additionally, some methods [72] enhance classification 
performance by maximizing the 𝐹 -𝑛𝑜𝑟𝑚 of the classification matrix, 
which constrains misclassification behavior. Let us assume the model’s 
prediction matrix for a batch of data is 𝐌, where 𝐵 and 𝐿 represent 
the batch size and the number of classes, respectively. The optimization 
objective for such methods is usually: 

‖𝐌‖𝐹 =

√

√

√

√

√

𝐵
∑

𝐿
∑

|𝑀𝑖,𝑗 |
2. (12)
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𝑖=1 𝑗=1
Since the 𝐹 -𝑛𝑜𝑟𝑚 of the classification matrix and the cross-entropy 
H(𝐌) exhibit opposite monotonicity, both play similar roles when used 
as classification loss functions. Maximizing the 𝐹 -𝑛𝑜𝑟𝑚 has an effect 
similar to minimizing the cross-entropy.

Mathematically, the matrix 𝐹 -𝑛𝑜𝑟𝑚 can be constrained by the matrix
nuclear-norm [73–75]: 
‖𝐌‖∗ ≤

√

min(𝐵,𝐿) ⋅ ‖𝐌‖𝐹 ≤
√

min(𝐵,𝐿) ⋅ 𝐵. (13)

Therefore, optimizing the matrix nuclear-norm to its maximum can 
also drive the 𝐹 -𝑛𝑜𝑟𝑚 toward its maximum, thereby effectively enhanc-
ing the model’s discriminability.

Measuring Diversity with Matrix Rank. Diversity can be approx-
imately expressed as the number of predicted classes in the batch 
matrix—more predicted classes indicate greater response diversity. 
Considering the linear correlation of probability distributions across 
different classes, if two probability distributions belong to different 
classes, they will differ significantly and be linearly independent, 
whereas if they belong to the same class, they will be approximately 
linearly correlated. The number of predicted classes corresponds to the 
maximum number of linearly independent vectors in the matrix, which 
is the rank of the matrix. In other words, in the prediction of a randomly 
sampled batch of data, constraining the rank of the classification 
matrix 𝐌 to be maximized can prevent the model’s predictions from 
collapsing into the majority category. However, optimizing the matrix 
rank is an NP-Hard problem, making it challenging to train directly. 
Mathematically, the nuclear-norm serves as a convex approximation of 
its rank, allowing us to indirectly constrain the matrix’s diversity by 
imposing a constraint on its nuclear-norm.

Loss for Nuclear-norm Maximization. Through the above analysis, 
we can conclude that maximizing the 𝐹 -𝑛𝑜𝑟𝑚 and the rank of the 
matrix can respectively enhance the matrix’s discriminability and di-
versity, respectively. Since the 𝐹 -𝑛𝑜𝑟𝑚 and nuclear-norm can mathemat-
ically constrain each other and exhibit the same monotonicity, and the
nuclear-norm is a convex approximation of the matrix rank, constraining 
the nuclear-norm alone can effectively balance the discriminability and 
diversity of the classification results.

Finally, for a randomly sampled batch of 𝐵 samples, with the 
classification matrix represented as 𝐌(𝑋), the loss function under the
nuclear-norm constraint can be expressed as: 

𝐿𝐴𝐶 = − 1
𝐵
‖𝐌(𝑋)‖∗. (14)

Fig.  6 compares the effects of entropy minimization and nuclear-
norm constraint when processing the same classification matrix. For the 
hard-to-classify sample in the last row (with a probability distribution 
of [0.5, 0.5]), if entropy minimization is used to further optimize the 
model, the result tends to favor the majority class (shifting from [0.5, 
0.5] to [0.6, 0.4]), with Class 1 gaining the upper hand. However, if 
the matrix nuclear-norm constraint is used, Class 2 gains the upper hand 
(shifting from [0.5, 0.5] to [0.4, 0.6]), effectively enhancing both the 
diversity and accuracy of the prediction results.

In CD-FSL tasks, the decline in generalization ability to novel classes 
caused by large domain shifts is often attributed to the inherent in-
ductive bias of the source domain pretrained model (e.g., feature 
and channel bias). A significant amount of research has shown that 
discarding irrelevant features or channels from the source domain can 
effectively alleviate this issue and improve cross-domain generalization. 
Our method, through the BAR and NAR mechanisms in the R2-FAC 
module, dynamically adjusts attention to suppress the inherent errors 
from the source domain’s bias and optimize target domain feature 
selection. With this mechanism, the model can effectively mitigate the 
inherent inductive bias caused by large domain shifts between the 
source and target domains, enhancing the representational power of the 
target domain features. Furthermore, the P-R2-L framework calibrates 
at three levels — prototype, feature, and loss — to reduce the impact 
of noisy instances, correct the inductive bias in the source domain, and 
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Fig. 6. Comparison of nuclear-norm constraint and entropy minimization (EntMin) on hard-to-classify samples. The figure assumes two classes, Class 1 and Class 2, with 𝐌 as the 
classification matrix. After processing with LAC and EntMin, new classification matrices are obtained. For the last row of hard-to-classify samples (with probability distribution 
[0.5,0.5]), the matrix nuclear-norm constraint (LAC) gives the minority Class 2 an advantage (from [0.5, 0.5] to [0.4, 0.6]), improving classification diversity and accuracy. The 
dark regions indicate an increase in the variable, where dark gray (blue) signifies an increase in the gray (blue) variable. H(𝐌) denotes the entropy value, while ‖𝐌‖∗ represents 
the value of the nuclear-norm.
balance the discriminability and diversity. This enhances the model’s 
adaptability and generalization performance in unseen domain shifts.

For the widely concerning issue of negative transfer in domain 
adaptation, our framework effectively addresses this problem through 
multiple modules. First, the BAR submodule in R2-FAC reduces at-
tention to irrelevant features in the source domain, suppressing the 
negative influence from the source domain and reducing the risk of 
negative transfer. Second, the NAR submodule minimizes interference 
from the inherent biases of the source domain by refocusing on the 
discriminative features of the target domain. Finally, the LAC module 
balances the diversity and discriminability of classification features 
within the loss function, preventing the misclassification of minority 
novel class instances as the dominant class, thus mitigating negative 
transfer caused by the source domain’s dominant features.

4. Experimental result and analysis

In this paper, we primarily focus on CD-FSL tasks. For the proposed 
method, we will answer the following questions in the experimental 
section:

• Q1. In the ablation study, does each module demonstrate its 
necessity and advancement? (Section 4.3)

• Q2. How does our model’s performance vary under different 
degrees of domain shift? (Sections 4.4 and 4.5)

• Q3. How does our model’s performance vary with different num-
bers of support instances? (Sections 4.4 and 4.5)

• Q4. What does the visualization of the key results look like after 
processing the critical module? (Section 4.6)

4.1. Experimental settings

Dataset Overview. This paper primarily focuses on the classi-
cal CD-FSL problem in a single-source domain setting. To properly 
evaluate the cross-domain generalization performance, we follow the 
settings used in previous methods [6,7,16], using 64 base classes from
mini-ImageNet [28] as the source domain and eight commonly used 
datasets — CUB [76], Cars [77], Places [78], Plantae [79], ChestX [80], 
ISIC [81], EuroSAT [82], and CropDisease [83] — as the target do-
mains. As shown in Table  1, the first four datasets are benchmarks sum-
marized in [5], consisting of natural images with various attributes and 
8

Table 1
Detailed information about the cross-domain datasets.
 Domain shift Dataset Description Classes 
 
Natural near-domain

CUB [76] Fine-grained birds 50  
 Cars [77] Fine-grained cars 49  
 Plantae [79] Plantae images 50  
 Places [78] Scene images 19  
 
Extreme distant-domain

CropDiscases [83] Crop disease images 38  
 EuroSAT [82] Satellite images 10  
 ISIC [81] Skin lesion images 7  
 ChestX [80] X-ray images 7  

relatively small domain shifts, which we refer to as natural near -domain 
datasets. The latter four datasets are summarized in [6], originating 
from distinct fields such as medicine, remote sensing, and agriculture, 
and exhibit significant domain shifts, which we refer to as extreme
distant -domain datasets. Experiments adopt the leave-one-out method, 
selecting the weights with the highest accuracy from the mini-ImageNet 
validation set for model evaluation in the target domains.

Benchmarking Methods. We conduct extensive evaluations of P-
R2-L on multiple SOTA benchmarks to verify its superiority. First, we 
compare P-R2-L with classical few-shot learning methods [11,12,28] 
that utilize episodic training strategies. Then, we compare P-R2-L with 
the optimal CD-FSL methods [7,23,26,27,83,84] that explore domain 
alignment and feature transformation. Additionally, as demonstrated 
by Guo et al. [6], traditional pretraining and fine-tuning methods 
outperform meta-learning methods in few-shot settings when domain 
shifts occur. In light of this, we further compare P-R2-L with fine-
tuning-based methods [6,23,24,84]. Overall, we thoroughly validated 
the effectiveness and superiority of our approach in addressing CD-FSL 
challenges compared to various types of methods.

4.2. Implementation details

Training settings. We uniformly use ResNet-10 [6,23,84] as the 
backbone network for feature extraction. The backbone’s pretrained 
parameters are obtained by training the model on the source domain
mini-ImageNet [28]. Following the protocol in [27], all input images 
are resized to 224 × 224. The momentum of the Adam optimizer is set 
to 0.9, with an initial learning rate of 0.001. For hyperparameters, we 
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Fig. 7. Ablation study on PAC. Comparison of cross-domain experimental accuracy 
before and after applying PAC under different numbers (0,1,2) of noise instances. With 
the influence of PAC, the more the number of noise instances, the more significant the 
improvement in accuracy.

set 𝛼 = 0.6. We evaluate the model on 600 randomly sampled episodes 
(with 15 query samples per class) under the 5-way 1-shot/5-shot setting 
and report the average accuracy (%). The experiments are conducted 
using the open-source PyTorch framework on an NVIDIA 2080 Ti GPU. 
By detailing our choices in optimization settings and parameters, we 
ensure the reproducibility of the experiments.

Evaluation metrics. The evaluation metrics of the model are con-
sistent with the mainstream CD-FSL evaluation metrics [27,84]. For 
each target domain, we randomly sample 600 𝑛-way 𝑘-shot 15-query 
tasks and record the average accuracy of these sampled tasks. The 
accuracy values shown in the tables represent the model’s 𝑡𝑜𝑝-1 accu-
racy. We report the classification accuracy of different methods across 
8 target domain datasets under both 5-way 1-shot and 5-way 5-shot 
experimental settings, respectively.

4.3. Ablation studies

We conduct ablation experiments with ResNet-10 [6,23,84] as the 
feature extractor in the 5-way 5-shot setting. As shown in Table  2, to 
further verify the effectiveness of each design in the framework, we 
apply PAC, BAR/NAR, R2-FAC, and LAC individually or in combination 
to the baseline model and conduct experiments across eight cross-
domain datasets. To conveniently demonstrate the model’s performance 
under different degrees of domain shifts, we divide the datasets into
near -domain, distant -domain, and full-domain categories and report the 
average classification accuracy for each.

In Table  2, a checkmark (√) is placed in the corresponding position 
if the module is used; otherwise, the space is left blank. Multiple 
checkmarks (√) indicate the simultaneous use of several modules. The 
R2-FAC module is composed of both the BAR and NAR submodules.

The influence of PAC. To validate the module’s impact on classifi-
cation performance, we design multiple comparison experiments under 
5-shot settings. We vary the number of noisy samples in the support set 
to 0, 1, and 2 to examine whether the module can effectively highlight 
key instances. Fig.  7 shows the average classification accuracy across 
8 datasets, where the model with prototype calibration consistently 
performs better under varying levels of noisy sample interference. 
The higher the noise ratio, the more significant the performance im-
provement, which aligns with our expectation that PAC highlights key 
instances and mitigates the effect of atypical intra-class samples in 
few-shot settings.
9

Fig. 8. Ablation study on 𝛼-values. Variation in accuracy with different values of the 
hyperparameter 𝛼 across near -domain, distant -domain, and full-domain datasets. The 
optimal 𝛼 value corresponding to the best accuracy varies with different levels of 
domain shift, generally falling within the range of 0.5 to 0.7. The upper and lower 
parts of the figure show the experimental results for the 5-way 1-shot and 5-way 5-
shot settings, respectively.

The influence of the 𝛼 value. In Fig.  8, we show how the hy-
perparameter 𝛼 in Eq. (5) affects cross-domain few-shot classification 
performance. On both near -domain and distant -domain datasets, ac-
curacy first increases and then decreases as 𝛼 grows. The optimal 𝛼
value varies with the degree of domain shift, typically ranging between 
0.5 and 0.7. For datasets with larger domain shifts, smaller optimal 
𝛼-values are usually observed. This is reasonable, as Eq. (5) indicates 
that smaller 𝛼-values help smooth attention, allowing the attention re-
lease function to effectively correct misaligned discriminative inductive 
biases from the source domain when the domain shift is large.

The influence of BAR/NAR. The R2-FAC module consists of the 
BAR and NAR submodules. Fig.  9 shows the classification results after 
adding BAR, NAR, and R2-FAC under both 1-shot and 5-shot settings. 
Models using each submodule individually perform better than those 
without any attention modules, demonstrating the effectiveness of both 
submodules. Table  2 presents the classification results when BAR ap-
pears alone or in combination with other modules across different test 
sets. In all cases, models using the BAR submodule alone outperform 
those without attention modules, confirming its effectiveness. Notably, 
performance improvements are more significant on datasets with larger 
domain shifts. BAR effectively weakens attention to discriminative 
features from the source domain, dispersing attention elsewhere. This 
characteristic alleviates erroneous inductive biases from the source 
domain in scenarios with large domain shifts, leading to improved 
classification accuracy.

The influence of FAC. The fourth row of Table  2 shows the 
classification results after adding the complete FAC. The experiments 
demonstrate that R2-FAC exhibits strong generalization across all eight 
datasets and effectively improves the original model’s classification 
performance. Comparing the results before and after adding NAR, 
it is evident that models with reaggregated attention perform better 
than those using only BAR. NAR aligns discriminative information 
across images, enabling more refined fine-grained feature extraction. 
By concatenating both modules, R2-FAC suppresses and corrects in-
correct inductive biases from the source domain, achieving optimal 
performance.

The influence of LAC. LAC is introduced as a constraint on the 
classification loss function. Focusing on rows 1 and 5, rows 2 and 8, 
and rows 7 and 10 in Table  2, we observe that the application of LAC 
consistently yields better results. Models with LAC show an average 
accuracy improvement of 1.14% on near -domain datasets and 1.06% on
distant -domain datasets compared to the baseline. This effect may be at-
tributed to LAC’s ability to correct the boundaries of difficult-to-classify 
samples. By constraining the nuclear-norm of the classification matrix, 
LAC balances the discriminability and diversity of classification results, 
effectively mitigating the decline in generalization ability caused by 
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Table 2
Ablation study of 5-way 5-shot tasks trained with the mini-ImageNet dataset. The best results are displayed in boldface (mean ± S.D.%). Numbers are in percentage (%). The 
checkmark (√) indicates that the module is used.
 Baseline PAC BAR R2-FAC LAC Ave:near -domain Ave:distant -domain Average  
 √ 58.50 ± 0.31 57.10 ± 0.27 57.80 ± 0.29  
 √ √

59.41 ± 0.30 58.20 ± 0.31 58.81 ± 0.31  
 √ √

61.46 ± 0.34 61.20 ± 0.26 61.33 ± 0.30  
 √ √

62.93 ± 0.28 62.81 ± 0.30 62.87 ± 0.28  
 √ √

59.64 ± 0.35 58.16 ± 0.31 58.90 ± 0.34  
 √ √ √

61.54 ± 0.41 62.11 ± 0.26 61.83 ± 0.29  
 √ √ √

63.66 ± 0.30 63.11 ± 0.25 63.39 ± 0.27  
 √ √ √

59.90 ± 0.36 58.42 ± 0.29 59.16 ± 0.32  
 √ √ √ √

63.67 ± 0.28 63.24 ± 0.25 63.46 ± 0.26  
 √ √ √ √

64.34 ± 0.35 63.81 ± 0.31 64.08 ± 0.32 
Fig. 9. Results of ablation experiments for BAR, NAR, and FAC. Blue, green, and yellow 
respectively represent the classification accuracy when BAR, NAR, and FAC are applied 
individually. (a) Classification accuracy on datasets with different domain shifts under 
1-shot settings. (b) Classification accuracy on datasets with different domain shifts 
under 5-shot settings.

erroneous discriminative features during domain shifts. Based on the 
loss curves during training (Fig.  10), we observe stable convergence 
for both the near -domain dataset (green curve) and the distant -domain 
dataset (red curve). Specifically, both curves exhibit a rapid decrease in 
the early stages of training and stabilize in the later stages, indicating 
that our model optimizes stably and converges effectively, validating 
the stability and reliability of the model across different datasets. 
Notably, the loss for the distant -domain dataset decreases more slowly, 
suggesting that the learning process is more challenging, likely due to 
the larger distributional gap between the data and the target task.

Complexity Comparison. The additional parameter count intro-
duced by the P-R2-L framework is mainly dominated by the R2-FAC 
module, and the overall complexity is 𝑂(𝑘 × 𝑚 + 𝑚2). The additional 
computational complexity of the framework is 𝑂(𝑘 × 𝑚 + 𝑚 × 𝐻 ×
𝑊 + 𝐵 × 𝐿), where 𝑘 is the number of classes, 𝑚 is the number of 
samples per class, 𝐻 and 𝑊  are the height and width of the feature 
map, and 𝐵 and 𝐿 are the batch size and the number of classes. To 
illustrate the model’s complexity, we report the parameter count (PC), 
floating-point operations (GFLOPs), and GPU inference time (GIT) for 
10
Fig. 10. Loss of our model on both near -domain and distant -domain datasets.

Table 3
Comparison of model parameter count and complexity. PC: Parameter Count; GFLOPs: 
Floating-point Operations; GIT: GPU (NVIDIA 2080 Ti) Inference Time for a task. The 
backbone network is set to ResNet-12 for both.
 Methods PC 5-way 1-shot 5-way 5-shot
 GFLOPs GIT GFLOPs GIT  
 ProtoNet 8.04M 101.550 0.00960 s 126.938 0.0130 s 
 Ours 8.29M 101.909 0.00971 s 127.519 0.0156 s 

the 5-way 1-shot and 5-way 5-shot tasks. As shown in Table  3, although 
P-R2-L slightly increases the computational cost and inference time 
compared to the classic network ProtoNet [29], its parameter count is 
only 0.25M larger than that of ProtoNet, which makes the model more 
complex and leads to a significant performance improvement. In terms 
of computational overhead, P-R2-L introduces only a small increase in 
computation (approximately 0.35% for 1-shot and 0.46% for 5-shot).

According to Table  2, the combination of PAC, R2-FAC, and LAC 
yields the highest performance. In summary, the ablation experiments 
confirm the modules’ effectiveness and demonstrate their strong gener-
alization capability.

4.4. Numerical results: Comparison with state-of-the-art

To validate the effectiveness of the proposed method, in this section, 
we compare P-R2-L with classical FSL methods [11,12,28] based on 
episodic training strategies and the optimal CD-FSL methods [7,23,
26,27,83,84] exploring domain alignment and feature transformation. 
To ensure fairness, we group these experiments based on whether 
fine-tuning (FT) or transductive learning (TR) is used.

The experiments are conducted under the 𝑛-way 𝑘-shot setting, 
with the test data being the eight target domain datasets mentioned 
earlier. To analyze the model’s performance under varying degrees of 
domain shift, we divide the datasets into natural near -domain datasets 
(CUB [76], Cars [77], Places [78], and Plantae [79]) and extreme
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Table 4
Few-shot results with different settings of backbones (Conv-4 and ResNet-10). The best results are displayed in boldface (mean ± S.D.%). Numbers are in percentage (%).
 Methods Backbones Ave:near -domain Ave:distant -domain Average

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 GNN+AFA [26] Conv-4 30.35±0.4 49.04±0.3 40.18±0.4 54.57±0.4 35.27±0.4 51.81±0.3 
 ResNet-10 42.98±0.5 62.00±0.4 46.49±0.4 59.64±0.4 44.74±0.4 60.82±0.4 
 LDP-net [27] Conv-4 32.18±0.4 50.06±0.3 40.98±0.5 55.69±0.3 36.58±0.5 52.88±0.3 
 ResNet-10 43.19±0.3 61.16±0.4 47.93±0.4 61.54±0.4 45.56±0.3 61.35±0.4 
 Ours Conv-4 𝟑𝟑.𝟕𝟏±𝟎.𝟒 𝟓𝟐.𝟎𝟒±𝟎.𝟒 𝟒𝟐.𝟒𝟑±𝟎.𝟓 𝟓𝟕.𝟏𝟏±𝟎.𝟑 𝟑𝟖.𝟎𝟕±𝟎.𝟓 𝟓𝟒.𝟓𝟖±𝟎.𝟒 
 ResNet-10 𝟒𝟓.𝟖𝟐±𝟎.𝟑 𝟔𝟒.𝟑𝟒±𝟎.𝟒 𝟓𝟎.𝟒𝟒±𝟎.𝟑 𝟔𝟑.𝟖𝟏±𝟎.𝟑 𝟒𝟖.𝟏𝟑±𝟎.𝟑 𝟔𝟒.𝟎𝟖±𝟎.𝟒 
Table 5
Classification accuracy (%) of 5-way 1-shot/5-shot tasks on near -domain datasets, trained with the mini-ImageNet dataset. TR stands for exploiting the full data of FSL task. Numbers 
are in percentage (%). The best results are highlighted in bold (mean ± S.D.%).
 Model TR CUB Cars Places Plantae

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 MatchingNet [28] (2016) 7 35.89±0.5 51.37±0.8 30.77±0.5 38.99±0.6 49.86±0.8 63.16±0.8 32.70±0.6 46.53±0.7 
 GNN [11] (2017) 7 44.40±0.5 62.87±0.5 31.72±0.4 43.70±0.4 52.42±0.5 70.91±0.5 33.60±0.4 48.51±0.4 
 GNN+ATA [23] (2021) 7 45.00±0.5 66.22±0.5 33.61±0.4 49.14±0.4 53.57±0.5 75.48±0.4 34.42±0.4 52.69±0.4 
 PCS [63] (2021) 7 43.44±0.4 66.10±0.6 34.42±0.5 51.26±0.4 54.03±0.4 73.65±0.4 36.02±0.5 54.12±0.3 
 MN+AFA [26] (2022) 7 41.02±0.4 59.46±0.4 33.52±0.4 46.13±0.4 𝟓𝟒.𝟔𝟔±𝟎.𝟓 68.87±0.4 37.60±0.4 52.43±0.4 
 GNN+AFA [26] (2022) 7 46.86±0.5 68.25±0.5 34.25±0.4 49.28±0.5 54.04±0.6 𝟕𝟔.𝟐𝟏±𝟎.𝟓 36.76±0.4 54.26±0.4 
 LDP-net [27] (2023) 7 49.82 70.39 35.51 52.84 53.82 72.90 39.84 58.49  
 FLoR [7] (2024) 7 49.99 70.39 37.41 53.43 53.18 72.31 40.10 55.80  
 Ours 7 𝟓𝟎.𝟒𝟒±𝟎.𝟑 𝟕𝟏.𝟎𝟓±𝟎.𝟑 𝟑𝟖.𝟐𝟎±𝟎.𝟒 𝟓𝟒.𝟑𝟖±𝟎.𝟒 53.72±0.3 73.41±0.4 𝟒𝟎.𝟗𝟐±𝟎.𝟑 𝟓𝟖.𝟓𝟏±𝟎.𝟑 
 TPN [12] (2018) 3 48.30±0.4 63.52±0.4 32.42±0.4 44.54±0.4 56.17±0.5 71.39±0.4 37.40±0.4 50.96±0.4 
 TPN+ATA [23] (2021) 3 50.26±0.5 65.31±0.4 34.18±0.4 46.95±0.4 57.03±0.5 72.12±0.4 39.83±0.4 55.08±0.4 
 TPN+AFA [26] (2022) 3 50.85±0.4 65.86±0.4 38.43±0.4 47.89±0.4 60.29±0.5 72.81±0.4 40.27±0.4 55.67±0.4 
 RDC [84] (2022) 3 48.68±0.5 64.36±0.4 38.26±0.5 52.15±0.4 59.53±0.5 73.24±0.4 𝟒𝟐.𝟐𝟗±𝟎.𝟓 𝟓𝟕.𝟓𝟎±𝟎.𝟒 
 FLoR [7] (2024) 3 55.35 70.83 38.86 53.55 60.94 73.88 41.61 56.28  
 Ours 3 𝟓𝟓.𝟒𝟐±𝟎.𝟓 𝟕𝟏.𝟏𝟒±𝟎.𝟓 𝟑𝟗.𝟏𝟔±𝟎.𝟒 𝟓𝟑.𝟗𝟗±𝟎.𝟒 𝟔𝟏.𝟏𝟑±𝟎.𝟓 𝟕𝟒.𝟐𝟒±𝟎.𝟒 42.23±0.4 57.17±0.4 
Table 6
Classification accuracy (%) of 5-way 1-shot/5-shot tasks on distant -domain datasets, trained with the mini-ImageNet dataset. TR stands for exploiting the full data of FSL task. 
Numbers are in percentage (%). The best results are highlighted in bold (mean ± S.D.%).
 Model TR CropDiseases EuroSAT ISIC ChestX

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 MatchingNet [28] (2016) 7 57.57±0.5 73.26±0.5 54.19±0.5 67.50±0.5 29.62±0.3 32.98±0.3 22.30±0.2 22.85±0.2 
 GNN [11] (2017) 7 59.19±0.5 83.12±0.4 54.61±0.5 78.69±0.4 30.14±0.3 42.54±0.4 21.94±0.2 23.87±0.2 
 GNN+ATA [23] (2021) 7 67.45±0.5 90.59±0.3 61.35±0.5 83.75±0.4 33.21±0.4 44.91±0.4 22.10±0.2 24.32±0.4 
 PCS [63] (2021) 7 66.04±0.4 89.94±0.4 62.14±0.3 83.98±0.4 31.96±0.5 42.65±0.5 21.83±0.4 25.63±0.3 
 MN+AFA [26] (2022) 7 60.71±0.5 80.07±0.4 61.28±0.5 69.63±0.5 32.32±0.3 39.88±0.3 22.11±0.2 23.18±0.2 
 GNN+AFA [26] (2022) 7 67.61±0.5 88.06±0.3 63.12±0.5 𝟖𝟓.𝟓𝟖±𝟎.𝟒 33.21±0.3 46.01±0.4 22.92±0.2 25.02±0.2 
 LDP-net [27] (2023) 7 69.64 89.40 𝟔𝟓.𝟏𝟏 82.01 33.97 48.06 23.01 26.67  
 FLoR [7] (2024) 7 73.64 91.25 62.90 80.87 38.11 51.44 23.11 26.70  
 Ours 7 𝟕𝟒.𝟔𝟎±𝟎.𝟑 𝟗𝟐.𝟑𝟔±𝟎.𝟒 63.79±0.3 82.12±0.3 𝟑𝟗.𝟏𝟕±𝟎.𝟑 𝟓𝟐.𝟕𝟒±𝟎.𝟑 𝟐𝟒.𝟏𝟗±𝟎.𝟑 𝟐𝟖.𝟎𝟐±𝟎.𝟑 
 TPN [12] (2018) 3 68.39±0.6 81.91±0.5 63.90±0.5 77.22±0.4 35.08±0.4 45.66±0.3 21.05±0.2 22.17±0.2 
 TPN+ATA [23] (2021) 3 77.82±0.5 88.15±0.5 65.94±0.5 79.47±0.3 34.70±0.4 45.83±0.3 21.67±0.2 23.60±0.2 
 TPN+AFA [26] (2022) 3 72.44±0.6 85.69±0.4 66.17±0.4 80.12±0.4 34.25±0.4 46.29±0.3 21.69±0.1 23.47±0.2 
 RDC [84] (2022) 3 79.72±0.5 88.90±0.3 65.58±0.5 77.15±0.4 32.33±0.3 41.28±0.3 22.77±0.2 25.91±0.2 
 FLoR [7] (2024) 3 85.95 92.32 70.96 82.04 39.78 52.16 22.92 26.27  
 Ours 3 𝟖𝟔.𝟑𝟓±𝟎.𝟒 𝟗𝟑.𝟐𝟒±𝟎.𝟑 𝟕𝟏.𝟓𝟕±𝟎.𝟒 𝟖𝟐.𝟗𝟖±𝟎.𝟒 𝟒𝟎.𝟑𝟓±𝟎.𝟒 𝟓𝟑.𝟐𝟒±𝟎.𝟓 𝟐𝟑.𝟔𝟒±𝟎.𝟑 𝟐𝟕.𝟒𝟖±𝟎.𝟑 
distant -domain datasets (ChestX [80], ISIC [81], EuroSAT [82], and 
CropDisease [83]). Tables  5 and 6 present the experimental results for 
5-way 1-shot and 5-way 5-shot settings across different domain shifts.

To verify the generalizability and applicability of our method to 
different backbone networks, we experimented with commonly used 
feature extraction backbones [28,29], Conv-4 and ResNet-10. As shown 
in Table  4, by comparing the results from these different backbone net-
works, we observe that our proposed method performs competitively on 
both the lightweight Conv-4 and the more complex ResNet-10. Given 
our model’s sensitivity to fine-grained feature extraction, all subsequent 
experiments will be conducted using ResNet-10, which is better suited 
for feature extraction.

Results for Near -Domain Datasets. For datasets with smaller do-
main shifts, such as CUB, Cars, Places, and Plantae, our method gen-
erally outperforms other SOTA methods [7,23,26,27,84] in both 1-
shot and 5-shot settings. Specifically, in 5-way tasks, compared to 
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the second-best methods FLoR [7], our model achieves accuracy im-
provements of 0.66%, 0.95%, and 2.71% on CUB, Cars, and Plantae, 
respectively. However, compared to GNN+AFA [26], the accuracy on 
Places decreases. We attribute this to the characteristics of the base 
class attention release submodule. Since Places overlaps with the source 
domain mini-ImageNet, it is classified as clearly near -domain data. Due 
to the suppression of discriminative features similar to those in the 
source domain by the attention release module, the accuracy on this 
dataset has decreased. CUB and Cars are classic fine-grained classifica-
tion datasets, and the strong performance on these two datasets demon-
strates the excellent fine-grained classification ability of our model. 
Combined with the ablation experiments (Table  2), it is evident that 
this performance improvement is mainly due to the attention release 
and reaggregation modules, which effectively correct and extract fine-
grained information for challenging fine-grained classification tasks. 
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Table 7
Classification accuracy (%) of 5-way 1-shot/5-shot tasks on near -domain datasets, trained with the mini-ImageNet dataset. FT stands for fine-tuning on target domain, TR stands 
for exploiting the full data of FSL task. Numbers are in percentage (%). The best results are highlighted in bold (mean ± S.D.%).
 Model FT TR CUB Cars Places Plantae

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 Fine-tuning [6] (2020) 3 7 43.53±0.4 63.76±0.4 35.12±0.4 51.21±0.4 50.57±0.4 70.68±0.4 38.77±0.4 56.45±0.4 
 NSAE [24] (2021) 3 7 – 68.51±0.8 – 59.41±0.7 – 71.02±0.7 – 59.55±0.7 
 FLoR [7] (2024) 3 7 50.01 73.39 38.13 57.21 53.61 72.37 40.20 61.11  
 Ours 3 7 𝟓𝟎.𝟏𝟑±𝟎.𝟒 𝟕𝟑.𝟕𝟓±𝟎.𝟒 𝟑𝟖.𝟔𝟐±𝟎.𝟑 𝟓𝟖.𝟐𝟔±𝟎.𝟒 𝟓𝟒.𝟎𝟒±𝟎.𝟓 𝟕𝟑.𝟓𝟎±𝟎.𝟒 𝟒𝟎.𝟗𝟐±𝟎.𝟑 𝟔𝟐.𝟒𝟑±𝟎.𝟑 
 TPN+ATA [23] (2021) 3 3 51.89±0.5 70.14±0.4 38.07±0.4 55.23±0.4 57.26±0.5 73.87±0.4 40.75±0.4 59.02±0.4 
 RDC [84] (2022) 3 3 51.20±0.5 67.77±0.4 39.13±0.5 53.75±0.5 61.50±0.6 74.65±0.4 𝟒𝟒.𝟑𝟑±𝟎.𝟔 60.63±0.4 
 FLoR [7] (2024) 3 3 55.94 74.06 40.01 57.98 61.27 74.25 41.70 61.70  
 Ours 3 3 𝟓𝟔.𝟑𝟓±𝟎.𝟓 𝟕𝟒.𝟖𝟐±𝟎.𝟓 𝟒𝟎.𝟖𝟎±𝟎.𝟑 𝟓𝟗.𝟒𝟑±𝟎.𝟑 𝟔𝟏.𝟗𝟓±𝟎.𝟑 𝟕𝟓.𝟐𝟒±𝟎.𝟓 42.72±0.4 𝟔𝟑.𝟎𝟎±𝟎.𝟒 
Table 8
Classification accuracy (%) of 5-way 1-shot/5-shot tasks on distant -domain datasets, trained with the mini-ImageNet dataset. FT stands for fine-tuning on target domain, TR stands 
for exploiting the full data of FSL task. Numbers are in percentage (%). The best results are highlighted in bold (mean ± S.D.%).
 Model FT TR CropDiseases EuroSAT ISIC ChestX

 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot  
 Fine-tuning [6] (2020) 3 7 73.43±0.5 89.84±0.3 66.17±0.5 81.59±0.3 34.60±0.3 49.51±0.3 22.13±0.2 25.37±0.2 
 NSAE [24] (2021) 3 7 – 93.14±0.5 – 83.96±0.6 – 54.04±0.6 – 27.10±0.4 
 FLoR [7] (2024) 3 7 84.04 92.33 69.13 83.06 38.81 56.74 23.12 26.77  
 Ours 3 7 𝟖𝟒.𝟕𝟔±𝟎.𝟒 𝟗𝟑.𝟏𝟗±𝟎.𝟒 𝟕𝟎.𝟏𝟎±𝟎.𝟑 𝟖𝟒.𝟔𝟏±𝟎.𝟑 𝟑𝟗.𝟔𝟓±𝟎.𝟑 𝟓𝟕.𝟔𝟕±𝟎.𝟑 𝟐𝟒.𝟏𝟒±𝟎.𝟑 𝟐𝟖.𝟑𝟖±𝟎.𝟐 
 TPN+ATA [23] (2021) 3 3 82.47±0.5 93.56±0.2 70.84±0.5 85.47±0.3 35.55±0.4 49.83±0.3 22.45±0.2 24.74±0.2 
 RDC [84] (2022) 3 3 86.33±0.5 93.55±0.3 71.57±0.5 84.67±0.3 35.84±0.4 49.06±0.3 22.27±0.2 25.48±0.2 
 FLoR [7] (2024) 3 3 86.30 93.60 71.38 83.76 41.67 57.54 23.12 26.89  
 Ours 3 3 𝟖𝟕.𝟎𝟎±𝟎.𝟑 𝟗𝟒.𝟓𝟑±𝟎.𝟒 𝟕𝟏.𝟖𝟕±𝟎.𝟓 𝟖𝟒.𝟖𝟏±𝟎.𝟓 𝟒𝟐.𝟒𝟑±𝟎.𝟒 𝟓𝟖.𝟔𝟑±𝟎.𝟑 𝟐𝟑.𝟗𝟒±𝟎.𝟐 𝟐𝟖.𝟑𝟒±𝟎.𝟐 
In 1-shot tasks, our method also achieves SOTA performance on the 
CUB, Cars, and Plantae datasets, with improvements of 0.45%, 0.79%, 
and 0.82% compared to the respective second-best method. Comparing 
the 1-shot and 5-shot experiments within the same target domain, 
we find that performance improvements in 1-shot tasks are relatively 
modest compared to 5-shot results. Referring to the ablation experi-
ments (Table  2), we can attribute part of this performance decline to 
the prerequisites for the PAC module. Specifically, the prototype can 
only be corrected when there is more than one instance per class, 
so the module is inactive in 1-shot tasks. For experiments under TR 
settings, our method achieves SOTA results across all datasets in 5-
shot tasks, with a 0.51% improvement in average accuracy compared 
to the second-best method, FLoR [7]. In 1-shot tasks, our method also 
performs well, though the accuracy improvement is less pronounced 
compared to the 5-shot setting.

Results for Distant -Domain Datasets. Compared to the afore-
mentioned four natural near -domain datasets, extreme cross-domain 
datasets like ChestX, ISIC, EuroSAT, and CropDisease exhibit greater 
domain shifts, making generalization more challenging. As shown in 
Table  6, it is evident that our proposed model also achieves SOTA 
performance on extreme distant -domain datasets in both 1-shot and 5-
shot settings. In 5-way tasks, the accuracy reaches 28.02%, 52.74%, and 
92.36% for the ChestX, ISIC, and CropDisease datasets, respectively, 
showing improvements of 1.32%, 1.30%, and 1.11% compared to the 
second-best method. Consistent with the observations on near -domain 
datasets, the performance improvement in the 1-shot tasks on distant -
domain datasets is also relatively modest. Combining this with the 
ablation experiments (Table  2), we can confirm that PAC effectively 
reduces the negative impact of atypical intra-class instances in multi-
instance tasks. Under TR settings, our method achieves SOTA results 
across all datasets in both the 1-shot and 5-shot tasks, with an average 
accuracy improvement of 0.58% and 1.13%, respectively, compared to 
the suboptimal method, FLoR [7]. The extensive results across different 
target domains and experimental settings support our viewpoint that 
the well-designed cross-domain learning framework P-R2-L is more 
suitable for CD-FSL tasks than existing complex techniques that explore 
domain alignment and feature transformation.

Qualitative Findings of Few-Shot Classification. From our exper-
imental observations, we can draw four key conclusions:
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• (1) Our model shows more significant performance improvements 
over other models on fine-grained tasks.

• (2) Compared to near -domain tasks, our model is better suited for
distant -domain tasks with larger domain shifts.

• (3) Compared to single-instance tasks, our model shows more 
pronounced improvements in multi-instance scenarios.

• (4) Our model achieves optimal performance under both trans-
ductive and inductive settings.

4.5. Numerical results: Comparison with fine-tuning

As mentioned in [6,16], in the case of domain shifts, methods 
based on pretraining and fine-tuning are more effective than few-shot 
learning approaches like metric learning and meta learning. In this 
section, in addition to classical FSL methods and CD-FSL methods, we 
further include comparisons between advanced fine-tuning methods 
and our model’s performance. For a fair comparison, we use the same 
initialized ResNet-10 as the backbone network for feature extraction. 
For the fine-tuning models, a fully connected layer is used as the 
classification head, while for our model, the P-R2-L framework is built 
on the backbone. Following the new comparison protocol proposed in 
previous work [23], for a given target task T: 𝑛-way 𝑘-shot 𝑞-query, 
where 𝑞 = 15 refers to the pseudo-samples generated for each class 
based on the support samples using the data augmentation method 
from [84]. For the fine-tuning models, during training, 15 pseudo-
samples per class are generated from the support samples using data 
augmentation methods for model fine-tuning in the testing phase. As 
per convention [6], the learning rate of the SGD optimizer is set to 0.01, 
with momentum set to 0.9. For our method, we use the same support 
and query samples as the fine-tuning method, with the Adam optimizer 
initialized at a learning rate of 0.001. Both the fine-tuning methods and 
our approach are trained for 50 epochs under the 5-way 1-shot/5-shot 
setting to obtain the final model. Since the training data is consistent for 
both models, this ensures a fair comparison. As shown in Tables  7 and
8, under the 5-way setting, our model achieves improvements of 1.61%, 
0.93%, 1.55%, and 0.86% over the second-best fine-tuning method on 
the distant -domain datasets ChestX, ISIC, EuroSAT, and CropDisease, 
respectively, as shown in Table  2. These improvements are significantly 
more pronounced compared to the gains observed on the near -domain 
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Fig. 11. Heatmap visualization before and after attention release. Source domain: CUB, target domains: mini-Imagenet and FPV. The figure displays the attention heatmap 
transformations for 2 source domain samples and 4 target domain samples (column 3 indicates before attention release and column 4 indicates after attention release). Under the 
influence of erroneous inductive bias from the source domain, the source domain samples accurately focus on discriminative regions, while images in the target domain all localize 
to the erroneous discriminative features. Red arrows indicate the direction of attention spread.
datasets {1.32%, 1.13%, 1.05%, and 0.36%}. Similarly, for transductive 
learning (TR) and single-instance (1-shot) scenarios, we can draw con-
clusions similar to those in Section 4.4. Therefore, we will not reiterate 
them here, but will briefly compare the experimental results.

4.6. Visualization of key results

To visually observe the performance changes brought by the pro-
posed modules, in this section, we conduct a visual analysis of key pro-
cesses and results. To more clearly showcase the experimental effects 
under tasks of varying granularity, we additionally introduce a finer-
grained FPV disease dataset (which requires classification down to the 
severity of the disease). Its labeling format is ‘‘plant -disease-severity ’’, 
which represents a finer granularity compared to datasets like CropDis-
ease, where the labeling format is simply ‘‘plant -disease’’.

Visualization of Attention Release. We visualize the feature trans-
formation diagrams for near -domain and distant -domain datasets. Box 
plots are used to illustrate the range of feature values on both near -
domain and distant -domain datasets. In Fig.  13, the red area represents 
the feature values before transformation, while the blue area represents 
those after transformation. From the main range of the box plots and 
some of the outliers, it is evident that, compared to the feature values 
before transformation, the gap between the maximum and minimum 
values of the transformed features has narrowed, and the feature values 
are more concentrated in appropriate ranges. The corrected attention is 
redistributed relatively evenly from the focal areas to the entire image. 
This indicates that after attention release, the feature distribution is 
more uniform, allowing the model to focus more precisely on key fea-
tures and avoid over-relying on specific extreme features. Additionally, 
after attention release, the model redistributes its focus from overly 
concentrated areas to various regions of the image, demonstrating a 
more comprehensive and detailed attention when processing the input. 
This is especially evident when handling distant -domain data, where 
important information is spread across more relevant areas, avoiding 
the previous over-concentration on certain specific domains.

Heatmap Visualization Before and After Attention Release. We 
also present the changes in heatmaps before and after attention release. 
Using CUB as the source domain, and mini-ImageNet and FPV as 
two target domains for testing, the second column in Fig.  11 shows 
typical example images from different datasets, while the third column 
illustrates incorrect attention heatmaps caused by the source domain’s 
erroneous discriminative inductive bias. It can be observed that, with-
out attention release, the attention in the source domain images could 
accurately focus, while other target domain images mistakenly concen-
trated on unimportant areas due to incorrect discriminative features, 
leading to incorrect feature selection. For instance, in some cases, the 
model wrongly focused on background noise or non-critical regions, 
likely due to the over-influence of source domain data features on the 
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discriminative process for the target domain data. After applying BAR, 
we obtain the released attention heatmaps shown in the fourth column. 
The attention values across the entire image are more balanced, and 
the focus shifts from the incorrect regions, evenly dispersing across 
different areas.

Heatmap Visualization Before and After Attention Reaggre-
gation. Similarly, using four target domain samples shown in Fig. 
12 as examples, we visualize the heatmap transformation from at-
tention release to cross-image attention reaggregation. During atten-
tion reaggregation, each support sample undergoes semantic alignment 
with a query sample to achieve fine-grained information localization 
across images. In each subplot, the second column shows the attention 
heatmap after attention release, and after cross-alignment, the final 
column displays the reaggregated attention map. It can be observed 
that our model demonstrates the correct heatmap distribution across 
different target domains, accurately extracting key features. Especially 
in some complex scenarios, the model can semantically align based on 
the characteristics of the target sample, accurately extracting important 
fine-grained features, rather than relying solely on global features. This 
process demonstrates the model’s attentiveness to feature learning and 
its reinforcement of key information, while also diminishing irrelevant 
background features or noise regions, further enhancing the model’s 
accuracy and reliability.

t-SNE Visualization. We perform t-SNE dimensionality reduction 
on the high-dimensional representations of source and target domain 
samples. As shown in Fig.  14, samples from different classes are repre-
sented by dots of different colors. An effective model should ensure that 
sample points from different classes remain well-separated, while those 
within the same class are closely clustered. We use mini-ImageNet as the 
source domain and test on three target domains with varying degrees 
of granularity: CIFAR, CUB, and FPV. As shown in Fig.  14, our model 
produces more reasonable and easily classifiable distributions across 
target domains with different granularity levels. Due to the strong fine-
grained feature extraction capability of our model, it is able to maintain 
compact intra-class distributions and relatively noticeable inter-class 
distances, even on the extremely fine-grained FPV dataset.

Fine-Grained Difficult Case Study and Confusion Matrix. We 
conduct a difficult case analysis on the extremely fine-grained FPV 
dataset (with classifications down to disease severity). The confusion 
matrix comparing our method to the baseline model is shown in Fig. 
15. Classes 18, 19, 20, 21, 22, and 23 represent 6 representative 
categories of fine-grained grape diseases. In the confusion matrix, the 
classification results for all these hard-to-classify fine-grained classes 
show significant improvement. Among them, classes 20 and 21, as the 
most challenging cases, are often difficult for agricultural experts to 
distinguish. Under our framework, the classification accuracy for this 
group of hard-to-classify classes improves significantly.
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Fig. 12. Heatmap visualization before and after attention reaggregation. (a) (b) Visualization of the attention heatmap transformations on the target domain dataset FPV. (c) (d) 
Visualization of the attention heatmap transformations on the target domain dataset mini-Imagenet. In each subplot, the second column represents the heatmaps after attention 
release, and the last column shows the heatmaps after attention reaggregation. Red arrows indicate the direction of attention spread.
Fig. 13. Box plot illustrating the transformation of feature magnitudes before and after 
attention release. The left panel shows the transformation for the near -domain dataset, 
while the right panel displays the transformation for the distant -domain dataset. The red 
area represents the feature values before transformation, and the blue area represents 
the feature values after transformation.

5. Conclusion

In this paper, we examine the issue of poor cross-domain general-
ization in few-shot learning models from the perspective of suppressing 
erroneous inductive biases from the source domain. We propose a 
three-level attention calibration framework, P-R2-L, to address this 
issue. First, the PAC module evaluates the importance of instances 
within a class and reweights them to highlight key instances, thereby 
reducing the impact of noisy instances. Second, an R2-FAC module is 
proposed, which sequentially integrates a BAR submodule and a NAR 
submodule. This setup suppresses erroneous discriminative inductive 
biases from the source domain and refocuses discriminative information 
in the target domain, significantly enhancing the cross-domain general-
ization ability of few-shot models. Finally, to mitigate the cross-domain 
model’s overemphasis on discriminative information, we introduce an 
LAC module based on matrix nuclear-norm constraint, which effectively 
balances the discriminability and diversity of classification results. 
Extensive experiments on eight CD-FSL datasets with varying degrees 
of domain shift demonstrate the superiority of the proposed method. 
The visualization analysis of key processes on fine-grained datasets 
intuitively demonstrates the effectiveness of the proposed modules 
from an interpretability perspective. Nevertheless, the current method 
has limitations, especially when faced with extreme domain shifts, 
which may affect the model’s performance. Additionally, the model’s 
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Fig. 14. t-SNE visualization at different granularity levels. The mini-Imagenet is used as 
the source domain, and the three datasets CIFAR, CUB, and FPV with different levels 
of granularity are used as the target domains, respectively. The left side shows the 
dimensionality reduction results from other method, while the right side displays the 
results from our method.
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Fig. 15. Confusion matrices for the baseline and ours. The numbers 18, 19, 20, 21, 22, 
and 23 on the 𝑥-axis represent six representative fine-grained disease classes of grapes. 
Each column in the matrix indicates the predicted results, while each row represents 
the true labels.

computational efficiency and complexity are also challenges that need 
attention. Although our method improves accuracy, there is still a 
certain computational overhead. Future work could reduce computa-
tional complexity by optimizing the network structure and adopting 
more efficient training strategies. Furthermore, stronger cross-domain 
adaptation techniques, such as adversarial learning and unsupervised 
learning, could be explored to enhance adaptation to unseen domains, 
and integrating more backbone networks could strengthen the robust-
ness of the method. We hope that these ideas and analyses will inspire 
researchers to better understand the essence of the CD-FSL problem.
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